IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v136y2024ics0140988324003839.html
   My bibliography  Save this article

On representation of energy storage in electricity planning models

Author

Listed:
  • Merrick, James H.
  • Bistline, John E.T.
  • Blanford, Geoffrey J.

Abstract

This paper considers the representation of energy storage in electricity sector capacity planning models. The incorporation of storage in long-term systems models of this type is increasingly relevant as the costs of storage technologies, particularly batteries, and of complementary variable renewable technologies decline. To value energy storage technologies appropriately in optimization models, a representation of linkages between time periods is required, breaking classical temporal aggregation strategies that greatly improve computation time. Our paper reviews approaches to address the problem of compressing chronology for large-scale electricity planning models and provides a generalized conceptual model, conditions for lossless aggregation, and key principles to evaluate aggregation methods. We propose a novel approach, which we call the “expected value” method, to maintain key economic characteristics of energy storage, variable renewables, dispatchable generation, and other power system resources at a relatively low computational cost and conduct numerical experiments to compare its accuracy and computational performance with other temporal aggregation methods.

Suggested Citation

  • Merrick, James H. & Bistline, John E.T. & Blanford, Geoffrey J., 2024. "On representation of energy storage in electricity planning models," Energy Economics, Elsevier, vol. 136(C).
  • Handle: RePEc:eee:eneeco:v:136:y:2024:i:c:s0140988324003839
    DOI: 10.1016/j.eneco.2024.107675
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988324003839
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2024.107675?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Energy storage; Energy systems optimization; Electric sector economics; Temporal aggregation;
    All these keywords.

    JEL classification:

    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:136:y:2024:i:c:s0140988324003839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.