IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v357y2024ics0306261923018597.html
   My bibliography  Save this article

Power market models for the clean energy transition: State of the art and future research needs

Author

Listed:
  • Haugen, Mari
  • Blaisdell-Pijuan, Paris L.
  • Botterud, Audun
  • Levin, Todd
  • Zhou, Zhi
  • Belsnes, Michael
  • Korpås, Magnus
  • Somani, Abhishek

Abstract

As power systems around the world are rapidly evolving to achieve decarbonization objectives, it is crucial that power system planners and operators use appropriate models and tools to analyze and address the associated challenges. This paper provides a detailed overview of the properties of power market models in the context of the clean energy transition. We review common power market model methodologies, their readiness for low- and zero‑carbon grids, and new power market trends. Based on the review, we suggest model improvements and new designs to increase modeling capabilities for future grids. The paper highlights key modeling concepts related to power system flexibility, with a particular focus on hydropower and energy storage, as well as the representation of grid services, price formation, temporal structure, and the importance of uncertainty. We find that a changing resource mix, market restructuring, and growing price uncertainty require more precise modeling techniques to adequately capture the new technology constraints and the dynamics of future power markets. In particular, models must adequately represent resource opportunity costs, multi-horizon flexibility, and energy storage capabilities across the full range of grid services. Moreover, at the system level, it is increasingly important to consider sub-hourly time resolution, enhanced uncertainty representation, and introduce co-optimization for dual market clearing of energy and grid services. Likewise, models should capture interdependencies between multiple energy carriers and demand sectors.

Suggested Citation

  • Haugen, Mari & Blaisdell-Pijuan, Paris L. & Botterud, Audun & Levin, Todd & Zhou, Zhi & Belsnes, Michael & Korpås, Magnus & Somani, Abhishek, 2024. "Power market models for the clean energy transition: State of the art and future research needs," Applied Energy, Elsevier, vol. 357(C).
  • Handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923018597
    DOI: 10.1016/j.apenergy.2023.122495
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923018597
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122495?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yoro, Kelvin O. & Daramola, Michael O. & Sekoai, Patrick T. & Wilson, Uwemedimo N. & Eterigho-Ikelegbe, Orevaoghene, 2021. "Update on current approaches, challenges, and prospects of modeling and simulation in renewable and sustainable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    3. Aien, Morteza & Hajebrahimi, Ali & Fotuhi-Firuzabad, Mahmud, 2016. "A comprehensive review on uncertainty modeling techniques in power system studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1077-1089.
    4. Oikonomou, Konstantinos & Tarroja, Brian & Kern, Jordan & Voisin, Nathalie, 2022. "Core process representation in power system operational models: Gaps, challenges, and opportunities for multisector dynamics research," Energy, Elsevier, vol. 238(PC).
    5. Reichenberg, Lina & Siddiqui, Afzal S. & Wogrin, Sonja, 2018. "Policy implications of downscaling the time dimension in power system planning models to represent variability in renewable output," Energy, Elsevier, vol. 159(C), pages 870-877.
    6. Bistline, John & Blanford, Geoffrey & Mai, Trieu & Merrick, James, 2021. "Modeling variable renewable energy and storage in the power sector," Energy Policy, Elsevier, vol. 156(C).
    7. Newbery, David & Pollitt, Michael G. & Ritz, Robert A. & Strielkowski, Wadim, 2018. "Market design for a high-renewables European electricity system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 695-707.
    8. Teichgraeber, Holger & Brandt, Adam R., 2022. "Time-series aggregation for the optimization of energy systems: Goals, challenges, approaches, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    9. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    10. Sternberg, R., 2010. "Hydropower's future, the environment, and global electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 713-723, February.
    11. Farihan Mohamad & Jiashen Teh, 2018. "Impacts of Energy Storage System on Power System Reliability: A Systematic Review," Energies, MDPI, vol. 11(7), pages 1-23, July.
    12. Todd Levin & John Bistline & Ramteen Sioshansi & Wesley J. Cole & Jonghwan Kwon & Scott P. Burger & George W. Crabtree & Jesse D. Jenkins & Rebecca O’Neil & Magnus Korpås & Sonja Wogrin & Benjamin F. , 2023. "Energy storage solutions to decarbonize electricity through enhanced capacity expansion modelling," Nature Energy, Nature, vol. 8(11), pages 1199-1208, November.
    13. Ruhnau, O. & Bucksteeg, M. & Ritter, D. & Schmitz, R. & Böttger, D. & Koch, M. & Pöstges, A. & Wiedmann, M. & Hirth, L., 2022. "Why electricity market models yield different results: Carbon pricing in a model-comparison experiment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    14. Shariatzadeh, Farshid & Mandal, Paras & Srivastava, Anurag K., 2015. "Demand response for sustainable energy systems: A review, application and implementation strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 343-350.
    15. Tanaka, Makoto & Chen, Yihsu, 2013. "Market power in renewable portfolio standards," Energy Economics, Elsevier, vol. 39(C), pages 187-196.
    16. Lonergan, Katherine Emma & Suter, Nicolas & Sansavini, Giovanni, 2023. "Energy systems modelling for just transitions," Energy Policy, Elsevier, vol. 183(C).
    17. Nahmmacher, Paul & Schmid, Eva & Hirth, Lion & Knopf, Brigitte, 2016. "Carpe diem: A novel approach to select representative days for long-term power system modeling," Energy, Elsevier, vol. 112(C), pages 430-442.
    18. de Mars, Patrick & O’Sullivan, Aidan, 2021. "Applying reinforcement learning and tree search to the unit commitment problem," Applied Energy, Elsevier, vol. 302(C).
    19. João Abel Peças Lopes & André Guimarães Madureira & Manuel Matos & Ricardo Jorge Bessa & Vítor Monteiro & João Luiz Afonso & Sérgio F. Santos & João P. S. Catalão & Carlos Henggeler Antunes & Pedro Ma, 2020. "The future of power systems: Challenges, trends, and upcoming paradigms," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(3), May.
    20. Foley, A.M. & Ó Gallachóir, B.P. & Hur, J. & Baldick, R. & McKeogh, E.J., 2010. "A strategic review of electricity systems models," Energy, Elsevier, vol. 35(12), pages 4522-4530.
    21. Zhou, Min & Wang, Bo & Watada, Junzo, 2019. "Deep learning-based rolling horizon unit commitment under hybrid uncertainties," Energy, Elsevier, vol. 186(C).
    22. Samuli Honkapuro & Jasmin Jaanto & Salla Annala, 2023. "A Systematic Review of European Electricity Market Design Options," Energies, MDPI, vol. 16(9), pages 1-26, April.
    23. RuthDominguez & Giorgia Oggioni & Yves Smeers, 2019. "Reserve procurement and flexibility services in power systems with high renewable capacity: Effects of integration on different market designs," LIDAM Reprints CORE 3019, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    24. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    25. Sneum, Daniel Møller & González, Mario Garzón & Gea-Bermúdez, Juan, 2021. "Increased heat-electricity sector coupling by constraining biomass use?," Energy, Elsevier, vol. 222(C).
    26. Mills, Andrew D. & Levin, Todd & Wiser, Ryan & Seel, Joachim & Botterud, Audun, 2020. "Impacts of variable renewable energy on wholesale markets and generating assets in the United States: A review of expectations and evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    27. Eser, Patrick & Singh, Antriksh & Chokani, Ndaona & Abhari, Reza S., 2016. "Effect of increased renewables generation on operation of thermal power plants," Applied Energy, Elsevier, vol. 164(C), pages 723-732.
    28. Johnson, Raymond B. & Oren, Shmuel S. & Svoboda, Alva J., 1997. "Equity and efficiency of unit commitment in competitive electricity markets," Utilities Policy, Elsevier, vol. 6(1), pages 9-19, March.
    29. Brian K. Edwards & Silvio J. Flaim & Richard E. Howitt, 1999. "Optimal Provision of Hydroelectric Power under Environmental and Regulatory Constraints," Land Economics, University of Wisconsin Press, vol. 75(2), pages 267-283.
    30. Dagoumas, Athanasios S. & Koltsaklis, Nikolaos E., 2019. "Review of models for integrating renewable energy in the generation expansion planning," Applied Energy, Elsevier, vol. 242(C), pages 1573-1587.
    31. Gacitua, L. & Gallegos, P. & Henriquez-Auba, R. & Lorca, Á. & Negrete-Pincetic, M. & Olivares, D. & Valenzuela, A. & Wenzel, G., 2018. "A comprehensive review on expansion planning: Models and tools for energy policy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 346-360.
    32. Oree, Vishwamitra & Sayed Hassen, Sayed Z. & Fleming, Peter J., 2017. "Generation expansion planning optimisation with renewable energy integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 790-803.
    33. Bernath, Christiane & Deac, Gerda & Sensfuß, Frank, 2021. "Impact of sector coupling on the market value of renewable energies – A model-based scenario analysis," Applied Energy, Elsevier, vol. 281(C).
    34. Zerrahn, Alexander & Schill, Wolf-Peter, 2017. "Long-run power storage requirements for high shares of renewables: review and a new model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1518-1534.
    35. Fattahi, A. & Sijm, J. & Faaij, A., 2020. "A systemic approach to analyze integrated energy system modeling tools: A review of national models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    36. Siala, Kais & Mier, Mathias & Schmidt, Lukas & Torralba-Díaz, Laura & Sheykhha, Siamak & Savvidis, Georgios, 2022. "Which model features matter? An experimental approach to evaluate power market modeling choices," Energy, Elsevier, vol. 245(C).
    37. O׳Connell, Niamh & Pinson, Pierre & Madsen, Henrik & O׳Malley, Mark, 2014. "Benefits and challenges of electrical demand response: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 686-699.
    38. Ringler, Philipp & Keles, Dogan & Fichtner, Wolf, 2016. "Agent-based modelling and simulation of smart electricity grids and markets – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 205-215.
    39. Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
    40. Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
    41. Eric Guerci & Mohammad Ali Rastegar & Silvano Cincotti, 2010. "Agent-based modeling and simulation of competitive wholesale electricity markets," Post-Print halshs-00871063, HAL.
    42. Savvidis, Georgios & Siala, Kais & Weissbart, Christoph & Schmidt, Lukas & Borggrefe, Frieder & Kumar, Subhash & Pittel, Karen & Madlener, Reinhard & Hufendiek, Kai, 2019. "The gap between energy policy challenges and model capabilities," Energy Policy, Elsevier, vol. 125(C), pages 503-520.
    43. Singh, Vineet Kumar & Singal, S.K., 2017. "Operation of hydro power plants-a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 610-619.
    44. Vithayasrichareon, Peerapat & Riesz, Jenny & MacGill, Iain, 2017. "Operational flexibility of future generation portfolios with high renewables," Applied Energy, Elsevier, vol. 206(C), pages 32-41.
    45. Ioannou, Anastasia & Fuzuli, Gulistiani & Brennan, Feargal & Yudha, Satya Widya & Angus, Andrew, 2019. "Multi-stage stochastic optimization framework for power generation system planning integrating hybrid uncertainty modelling," Energy Economics, Elsevier, vol. 80(C), pages 760-776.
    46. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    47. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    48. Zakaria, A. & Ismail, Firas B. & Lipu, M.S. Hossain & Hannan, M.A., 2020. "Uncertainty models for stochastic optimization in renewable energy applications," Renewable Energy, Elsevier, vol. 145(C), pages 1543-1571.
    49. Qichen Wang & Zhengmeng Hou & Yilin Guo & Liangchao Huang & Yanli Fang & Wei Sun & Yuhan Ge, 2023. "Enhancing Energy Transition through Sector Coupling: A Review of Technologies and Models," Energies, MDPI, vol. 16(13), pages 1-31, July.
    50. Chris Johnathon & Ashish Prakash Agalgaonkar & Joel Kennedy & Chayne Planiden, 2021. "Analyzing Electricity Markets with Increasing Penetration of Large-Scale Renewable Power Generation," Energies, MDPI, vol. 14(22), pages 1-15, November.
    51. Koppelaar, Rembrandt H.E.M. & Keirstead, James & Shah, Nilay & Woods, Jeremy, 2016. "A review of policy analysis purpose and capabilities of electricity system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1531-1544.
    52. Fodstad, Marte & Crespo del Granado, Pedro & Hellemo, Lars & Knudsen, Brage Rugstad & Pisciella, Paolo & Silvast, Antti & Bordin, Chiara & Schmidt, Sarah & Straus, Julian, 2022. "Next frontiers in energy system modelling: A review on challenges and the state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    53. Söder, Lennart & Tómasson, Egill & Estanqueiro, Ana & Flynn, Damian & Hodge, Bri-Mathias & Kiviluoma, Juha & Korpås, Magnus & Neau, Emmanuel & Couto, António & Pudjianto, Danny & Strbac, Goran & Burke, 2020. "Review of wind generation within adequacy calculations and capacity markets for different power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    54. Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
    55. Fredo, Guilherme Luiz Minetto & Finardi, Erlon Cristian & de Matos, Vitor Luiz, 2019. "Assessing solution quality and computational performance in the long-term generation scheduling problem considering different hydro production function approaches," Renewable Energy, Elsevier, vol. 131(C), pages 45-54.
    56. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    57. Menegaki, Angeliki, 2008. "Valuation for renewable energy: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2422-2437, December.
    58. Frew, Bethany A. & Jacobson, Mark Z., 2016. "Temporal and spatial tradeoffs in power system modeling with assumptions about storage: An application of the POWER model," Energy, Elsevier, vol. 117(P1), pages 198-213.
    59. Prina, Matteo Giacomo & Manzolini, Giampaolo & Moser, David & Nastasi, Benedetto & Sparber, Wolfram, 2020. "Classification and challenges of bottom-up energy system models - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    60. Wolfgang, Ove & Haugstad, Arne & Mo, Birger & Gjelsvik, Anders & Wangensteen, Ivar & Doorman, Gerard, 2009. "Hydro reservoir handling in Norway before and after deregulation," Energy, Elsevier, vol. 34(10), pages 1642-1651.
    61. Ming, Bo & Liu, Pan & Guo, Shenglian & Cheng, Lei & Zhou, Yanlai & Gao, Shida & Li, He, 2018. "Robust hydroelectric unit commitment considering integration of large-scale photovoltaic power: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1341-1352.
    62. Ramos, Andres & Ventosa, Mariano & Rivier, Michel, 1999. "Modeling competition in electric energy markets by equilibrium constraints," Utilities Policy, Elsevier, vol. 7(4), pages 233-242, February.
    63. Möst, Dominik & Keles, Dogan, 2010. "A survey of stochastic modelling approaches for liberalised electricity markets," European Journal of Operational Research, Elsevier, vol. 207(2), pages 543-556, December.
    64. Kopiske, Jakob & Spieker, Sebastian & Tsatsaronis, George, 2017. "Value of power plant flexibility in power systems with high shares of variable renewables: A scenario outlook for Germany 2035," Energy, Elsevier, vol. 137(C), pages 823-833.
    65. Hung-po Chao, 2019. "Incentives for efficient pricing mechanism in markets with non-convexities," Journal of Regulatory Economics, Springer, vol. 56(1), pages 33-58, August.
    66. Blanco, Herib & Leaver, Jonathan & Dodds, Paul E. & Dickinson, Robert & García-Gusano, Diego & Iribarren, Diego & Lind, Arne & Wang, Changlong & Danebergs, Janis & Baumann, Martin, 2022. "A taxonomy of models for investigating hydrogen energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    67. Hu, Jing & Harmsen, Robert & Crijns-Graus, Wina & Worrell, Ernst & van den Broek, Machteld, 2018. "Identifying barriers to large-scale integration of variable renewable electricity into the electricity market: A literature review of market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2181-2195.
    68. Gonzato, Sebastian & Bruninx, Kenneth & Delarue, Erik, 2021. "Long term storage in generation expansion planning models with a reduced temporal scope," Applied Energy, Elsevier, vol. 298(C).
    69. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    70. Deepti Rani & Maria Moreira, 2010. "Simulation–Optimization Modeling: A Survey and Potential Application in Reservoir Systems Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(6), pages 1107-1138, April.
    71. Lopion, Peter & Markewitz, Peter & Robinius, Martin & Stolten, Detlef, 2018. "A review of current challenges and trends in energy systems modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 156-166.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Fodstad, Marte & Crespo del Granado, Pedro & Hellemo, Lars & Knudsen, Brage Rugstad & Pisciella, Paolo & Silvast, Antti & Bordin, Chiara & Schmidt, Sarah & Straus, Julian, 2022. "Next frontiers in energy system modelling: A review on challenges and the state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    3. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    4. Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Zerrahn, Alexander & Murmann, Alexander & Launer, Jann & Fehler, Alexander & Gaumnitz, Felix & van Ouwerkerk, Jonas & Bußa, 2022. "Modeling flexibility in energy systems — comparison of power sector models based on simplified test cases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    5. Prina, Matteo Giacomo & Nastasi, Benedetto & Groppi, Daniele & Misconel, Steffi & Garcia, Davide Astiaso & Sparber, Wolfram, 2022. "Comparison methods of energy system frameworks, models and scenario results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Blanco, Herib & Leaver, Jonathan & Dodds, Paul E. & Dickinson, Robert & García-Gusano, Diego & Iribarren, Diego & Lind, Arne & Wang, Changlong & Danebergs, Janis & Baumann, Martin, 2022. "A taxonomy of models for investigating hydrogen energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Murmann, Alexander & Launer, Jann & Gaumnitz, Felix & van Ouwerkerk, Jonas & Mikurda, Jennifer & Torralba-Díaz, Laura, 2022. "Model-related outcome differences in power system models with sector coupling—Quantification and drivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. van Ouwerkerk, Jonas & Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Zerrahn, Alexander & Murmann, Alexander & Launer, Jann & Torralba-Díaz, Laura & Bußar, Christian, 2022. "Impacts of power sector model features on optimal capacity expansion: A comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    9. Thimet, P.J. & Mavromatidis, G., 2022. "Review of model-based electricity system transition scenarios: An analysis for Switzerland, Germany, France, and Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    10. Martínez-Gordón, R. & Morales-España, G. & Sijm, J. & Faaij, A.P.C., 2021. "A review of the role of spatial resolution in energy systems modelling: Lessons learned and applicability to the North Sea region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    11. Morales-España, Germán & Martínez-Gordón, Rafael & Sijm, Jos, 2022. "Classifying and modelling demand response in power systems," Energy, Elsevier, vol. 242(C).
    12. Fattahi, A. & Sijm, J. & Faaij, A., 2020. "A systemic approach to analyze integrated energy system modeling tools: A review of national models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    13. Teichgraeber, Holger & Brandt, Adam R., 2022. "Time-series aggregation for the optimization of energy systems: Goals, challenges, approaches, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    14. Md. Nasimul Islam Maruf, 2019. "Sector Coupling in the North Sea Region—A Review on the Energy System Modelling Perspective," Energies, MDPI, vol. 12(22), pages 1-35, November.
    15. Chang, Miguel & Lund, Henrik & Thellufsen, Jakob Zinck & Østergaard, Poul Alberg, 2023. "Perspectives on purpose-driven coupling of energy system models," Energy, Elsevier, vol. 265(C).
    16. Oikonomou, Konstantinos & Tarroja, Brian & Kern, Jordan & Voisin, Nathalie, 2022. "Core process representation in power system operational models: Gaps, challenges, and opportunities for multisector dynamics research," Energy, Elsevier, vol. 238(PC).
    17. Javier L'opez Prol & Wolf-Peter Schill, 2020. "The Economics of Variable Renewables and Electricity Storage," Papers 2012.15371, arXiv.org.
    18. Marrero-Trujillo, Verónica & Arias-Gaviria, Jessica & Arango-Aramburo, Santiago & Larsen, Erik R., 2023. "Gamification model for communicating and evaluating renewable energy planning," Utilities Policy, Elsevier, vol. 84(C).
    19. Plazas-Niño, F.A. & Ortiz-Pimiento, N.R. & Montes-Páez, E.G., 2022. "National energy system optimization modelling for decarbonization pathways analysis: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    20. Beck, J.-P. & Reinhard, J. & Kamps, K. & Kupka, J. & Derksen, C., 2022. "Model experiments in operational energy system analysis: Power grid focused scenario comparisons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923018597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.