IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v381y2025ics0306261924024255.html
   My bibliography  Save this article

Does taxation hamper the vehicle-to-grid business case? Empirical evidence from Germany

Author

Listed:
  • Sabadini, Felipe
  • Madlener, Reinhard

Abstract

The literature extensively discusses how taxation — more specifically, double taxation — interferes with vehicle-to-grid (V2G) business models. In this paper, we analyze existing grid regulations affecting the participation of electric vehicles in the ancillary services market. We also study future governmental policy frameworks as possible solutions to overcome barriers, potentially unlocking the economic benefits of EV battery storage technologies. Additionally, we examine other barriers to V2G applications, such as additional battery degradation or the need for battery replacement. We empirically explore the V2G business case using the situation of Germany to assess the economic feasibility of V2G operation for frequency regulation. Finally, we investigate how taxation affects revenues to determine whether it restricts V2G’s full potential. We use multiple scenarios with different dispatch-to-contract ratios, explicitly considering battery degradation. Our results show profitable outcomes across all scenarios. Although taxation is frequently cited as a barrier to V2G, many taxes and tariffs are already exempted when V2G operation is considered. For the remaining tariffs, taxation occurs only when electricity is fed into the grid, thus avoiding double taxation. However, the value-added tax (VAT) applies in both directions. Nevertheless, we can conclude that while barriers still exist for fully exploiting V2G operations, the financial results are positive for both V2G operators and EV owners.

Suggested Citation

  • Sabadini, Felipe & Madlener, Reinhard, 2025. "Does taxation hamper the vehicle-to-grid business case? Empirical evidence from Germany," Applied Energy, Elsevier, vol. 381(C).
  • Handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924024255
    DOI: 10.1016/j.apenergy.2024.125041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924024255
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Gschwendtner, Christine & Sinsel, Simon R. & Stephan, Annegret, 2021. "Vehicle-to-X (V2X) implementation: An overview of predominate trial configurations and technical, social and regulatory challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Weiss, Martin & Patel, Martin K. & Junginger, Martin & Perujo, Adolfo & Bonnel, Pierre & van Grootveld, Geert, 2012. "On the electrification of road transport - Learning rates and price forecasts for hybrid-electric and battery-electric vehicles," Energy Policy, Elsevier, vol. 48(C), pages 374-393.
    3. Gough, Rebecca & Dickerson, Charles & Rowley, Paul & Walsh, Chris, 2017. "Vehicle-to-grid feasibility: A techno-economic analysis of EV-based energy storage," Applied Energy, Elsevier, vol. 192(C), pages 12-23.
    4. Tong, Ziqiang & Mansouri, Seyed Amir & Huang, Shoujun & Rezaee Jordehi, Ahmad & Tostado-Véliz, Marcos, 2023. "The role of smart communities integrated with renewable energy resources, smart homes and electric vehicles in providing ancillary services: A tri-stage optimization mechanism," Applied Energy, Elsevier, vol. 351(C).
    5. Kumar, Abhishek & Meena, Nand K. & Singh, Arvind R. & Deng, Yan & He, Xiangning & Bansal, R.C. & Kumar, Praveen, 2019. "Strategic integration of battery energy storage systems with the provision of distributed ancillary services in active distribution systems," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Angenendt, Georg & Zurmühlen, Sebastian & Axelsen, Hendrik & Sauer, Dirk Uwe, 2018. "Comparison of different operation strategies for PV battery home storage systems including forecast-based operation strategies," Applied Energy, Elsevier, vol. 229(C), pages 884-899.
    7. Noori, Mehdi & Zhao, Yang & Onat, Nuri C. & Gardner, Stephanie & Tatari, Omer, 2016. "Light-duty electric vehicles to improve the integrity of the electricity grid through Vehicle-to-Grid technology: Analysis of regional net revenue and emissions savings," Applied Energy, Elsevier, vol. 168(C), pages 146-158.
    8. Noel, Lance & Zarazua de Rubens, Gerardo & Kester, Johannes & Sovacool, Benjamin K., 2018. "Beyond emissions and economics: Rethinking the co-benefits of electric vehicles (EVs) and vehicle-to-grid (V2G)," Transport Policy, Elsevier, vol. 71(C), pages 130-137.
    9. Lund, Henrik & Kempton, Willett, 2008. "Integration of renewable energy into the transport and electricity sectors through V2G," Energy Policy, Elsevier, vol. 36(9), pages 3578-3587, September.
    10. Sagaria, Shemin & van der Kam, Mart & Boström, Tobias, 2025. "Vehicle-to-grid impact on battery degradation and estimation of V2G economic compensation," Applied Energy, Elsevier, vol. 377(PB).
    11. Ribeiro, Fernando J. & Lopes, João A. Peças & Soares, Filipe J. & Madureira, André G., 2024. "A novel TSO settlement scheme for the Frequency Containment Reserve Cooperation in Europe’s integrated electricity market," Utilities Policy, Elsevier, vol. 91(C).
    12. Sarabi, Siyamak & Davigny, Arnaud & Courtecuisse, Vincent & Riffonneau, Yann & Robyns, Benoît, 2016. "Potential of vehicle-to-grid ancillary services considering the uncertainties in plug-in electric vehicle availability and service/localization limitations in distribution grids," Applied Energy, Elsevier, vol. 171(C), pages 523-540.
    13. Xaviery N. Penisa & Michael T. Castro & Jethro Daniel A. Pascasio & Eugene A. Esparcia & Oliver Schmidt & Joey D. Ocon, 2020. "Projecting the Price of Lithium-Ion NMC Battery Packs Using a Multifactor Learning Curve Model," Energies, MDPI, vol. 13(20), pages 1-18, October.
    14. Haugen, Mari & Blaisdell-Pijuan, Paris L. & Botterud, Audun & Levin, Todd & Zhou, Zhi & Belsnes, Michael & Korpås, Magnus & Somani, Abhishek, 2024. "Power market models for the clean energy transition: State of the art and future research needs," Applied Energy, Elsevier, vol. 357(C).
    15. Das, Ridoy & Wang, Yue & Putrus, Ghanim & Kotter, Richard & Marzband, Mousa & Herteleer, Bert & Warmerdam, Jos, 2020. "Multi-objective techno-economic-environmental optimisation of electric vehicle for energy services," Applied Energy, Elsevier, vol. 257(C).
    16. Abiodun, Kehinde & Hood, Karoline & Cox, John L. & Newman, Alexandra M. & Zolan, Alex J., 2023. "The value of concentrating solar power in ancillary services markets," Applied Energy, Elsevier, vol. 334(C).
    17. Signer, Tim & Baumgartner, Nora & Ruppert, Manuel & Sandmeier, Thorben & Fichtner, Wolf, 2024. "Modeling V2G spot market trading: The impact of charging tariffs on economic viability," Energy Policy, Elsevier, vol. 189(C).
    18. Bishop, Justin D.K. & Axon, Colin J. & Bonilla, David & Tran, Martino & Banister, David & McCulloch, Malcolm D., 2013. "Evaluating the impact of V2G services on the degradation of batteries in PHEV and EV," Applied Energy, Elsevier, vol. 111(C), pages 206-218.
    19. Peng, Ruoqing & Tang, Justin Hayse Chiwing G. & Yang, Xiong & Meng, Meng & Zhang, Jie & Zhuge, Chengxiang, 2024. "Investigating the factors influencing the electric vehicle market share: A comparative study of the European Union and United States," Applied Energy, Elsevier, vol. 355(C).
    20. Lunz, Benedikt & Yan, Zexiong & Gerschler, Jochen Bernhard & Sauer, Dirk Uwe, 2012. "Influence of plug-in hybrid electric vehicle charging strategies on charging and battery degradation costs," Energy Policy, Elsevier, vol. 46(C), pages 511-519.
    21. Uddin, Kotub & Jackson, Tim & Widanage, Widanalage D. & Chouchelamane, Gael & Jennings, Paul A. & Marco, James, 2017. "On the possibility of extending the lifetime of lithium-ion batteries through optimal V2G facilitated by an integrated vehicle and smart-grid system," Energy, Elsevier, vol. 133(C), pages 710-722.
    22. Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo & Sovacool, Benjamin K., 2018. "Promoting Vehicle to Grid (V2G) in the Nordic region: Expert advice on policy mechanisms for accelerated diffusion," Energy Policy, Elsevier, vol. 116(C), pages 422-432.
    23. Dallinger, David & Krampe, Daniel & Wietschel, Martin, 2010. "Vehicle-to-grid regulation based on a dynamic simulation of mobility behavior," Working Papers "Sustainability and Innovation" S4/2010, Fraunhofer Institute for Systems and Innovation Research (ISI).
    24. Jargstorf, Johannes & Wickert, Manuel, 2013. "Offer of secondary reserve with a pool of electric vehicles on the German market," Energy Policy, Elsevier, vol. 62(C), pages 185-195.
    25. DeForest, Nicholas & MacDonald, Jason S. & Black, Douglas R., 2018. "Day ahead optimization of an electric vehicle fleet providing ancillary services in the Los Angeles Air Force Base vehicle-to-grid demonstration," Applied Energy, Elsevier, vol. 210(C), pages 987-1001.
    26. Noel, Lance & Zarazua de Rubens, Gerardo & Kester, Johannes & Sovacool, Benjamin K., 2019. "Navigating expert skepticism and consumer distrust: Rethinking the barriers to vehicle-to-grid (V2G) in the Nordic region," Transport Policy, Elsevier, vol. 76(C), pages 67-77.
    27. Björn Nykvist & Måns Nilsson, 2015. "Rapidly falling costs of battery packs for electric vehicles," Nature Climate Change, Nature, vol. 5(4), pages 329-332, April.
    28. Noel, Lance & Zarazua de Rubens, Gerardo & Sovacool, Benjamin K., 2018. "Optimizing innovation, carbon and health in transport: Assessing socially optimal electric mobility and vehicle-to-grid pathways in Denmark," Energy, Elsevier, vol. 153(C), pages 628-637.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andersen, Daniel & Powell, Siobhan, 2025. "Policy and pricing tools to incentivize distributed electric vehicle-to-grid charging control," Energy Policy, Elsevier, vol. 198(C).
    2. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo, 2020. "Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    3. Hu, Yang & Bahamonde-Birke, Francisco J. & Ettema, Dick, 2025. "Vehicle-to-grid, why not? An interview with battery electric vehicle users with various driving patterns in Utrecht, the Netherlands," Transport Policy, Elsevier, vol. 164(C), pages 231-240.
    4. Bakhuis, Jerico & Barbour, Natalia & Chappin, Émile J.L., 2025. "Exploring user willingness to adopt vehicle-to-grid (V2G): A statistical analysis of stated intentions," Energy Policy, Elsevier, vol. 203(C).
    5. Pearre, Nathaniel S. & Ribberink, Hajo, 2019. "Review of research on V2X technologies, strategies, and operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 61-70.
    6. Bishop, Justin D.K. & Axon, Colin J. & Bonilla, David & Banister, David, 2016. "Estimating the grid payments necessary to compensate additional costs to prospective electric vehicle owners who provide vehicle-to-grid ancillary services," Energy, Elsevier, vol. 94(C), pages 715-727.
    7. Sagaria, Shemin & van der Kam, Mart & Boström, Tobias, 2025. "Vehicle-to-grid impact on battery degradation and estimation of V2G economic compensation," Applied Energy, Elsevier, vol. 377(PB).
    8. Chen, Ching-Fu & Lai, Ching-Ming, 2024. "Understanding the acceptance of vehicle-to-grid (V2G) services: Evidence from Taiwan," Transport Policy, Elsevier, vol. 159(C), pages 230-240.
    9. Heilmann, C. & Friedl, G., 2021. "Factors influencing the economic success of grid-to-vehicle and vehicle-to-grid applications—A review and meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    10. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & de Rubens, Gerardo Zarazua, 2019. "Energy Injustice and Nordic Electric Mobility: Inequality, Elitism, and Externalities in the Electrification of Vehicle-to-Grid (V2G) Transport," Ecological Economics, Elsevier, vol. 157(C), pages 205-217.
    11. Muhammad Huda & Tokimatsu Koji & Muhammad Aziz, 2020. "Techno Economic Analysis of Vehicle to Grid (V2G) Integration as Distributed Energy Resources in Indonesia Power System," Energies, MDPI, vol. 13(5), pages 1-16, March.
    12. Bogdanov, Dmitrii & Breyer, Christian, 2024. "Role of smart charging of electric vehicles and vehicle-to-grid in integrated renewables-based energy systems on country level," Energy, Elsevier, vol. 301(C).
    13. Bhandari, Vivek & Sun, Kaiyang & Homans, Frances, 2018. "The profitability of vehicle to grid for system participants - A case study from the Electricity Reliability Council of Texas," Energy, Elsevier, vol. 153(C), pages 278-286.
    14. Park, Sung-Won & Son, Sung-Yong, 2023. "Techno-economic analysis for the electric vehicle battery aging management of charge point operator," Energy, Elsevier, vol. 280(C).
    15. Rishabh Ghotge & Koen Philippe Nijssen & Jan Anne Annema & Zofia Lukszo, 2022. "Use before You Choose: What Do EV Drivers Think about V2G after Experiencing It?," Energies, MDPI, vol. 15(13), pages 1-22, July.
    16. van der Kam, Mart & van Sark, Wilfried, 2015. "Smart charging of electric vehicles with photovoltaic power and vehicle-to-grid technology in a microgrid; a case study," Applied Energy, Elsevier, vol. 152(C), pages 20-30.
    17. Kumar, Gokula Manikandan Senthil & Guo, Xinman & Zhou, Shijie & Luo, Haojie & Wu, Qi & Liu, Yulin & Dou, Zhenyu & Pan, Kai & Xu, Yang & Yang, Hongxing & Cao, Sunliang, 2025. "State-of-the-art review of smart energy management systems for supporting zero-emission electric vehicles with X2V and V2X interactions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    18. Gonzalez Venegas, Felipe & Petit, Marc & Perez, Yannick, 2021. "Active integration of electric vehicles into distribution grids: Barriers and frameworks for flexibility services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    19. Haupt, Leon & Schöpf, Michael & Wederhake, Lars & Weibelzahl, Martin, 2020. "The influence of electric vehicle charging strategies on the sizing of electrical energy storage systems in charging hub microgrids," Applied Energy, Elsevier, vol. 273(C).
    20. Neaimeh, Myriam & Crozier, Constance & Deakin, Matthew, 2025. "Learning by charging: Understanding consumers’ changing attitudes towards vehicle-to-grid," Applied Energy, Elsevier, vol. 382(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924024255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.