IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v382y2025ics0306261924025674.html
   My bibliography  Save this article

Learning by charging: Understanding consumers’ changing attitudes towards vehicle-to-grid

Author

Listed:
  • Neaimeh, Myriam
  • Crozier, Constance
  • Deakin, Matthew

Abstract

Vehicle-to-grid (V2G) charging, where vehicles can send power to the grid, can provide valuable services to energy systems and network operators. However, social acceptance is an essential and overlooked barrier which must be addressed if V2G is to be successfully deployed. This study investigates the factors that govern attitudes towards V2G, and how electric vehicle (EV) ownership and participation in V2G changes them. For the first time, this includes survey data from users who had experience using a V2G charger, comparing the response of V2G users (n=49) with EV owners (n=520) and non-EV owners (n=1091). We show that time and EV ownership have lowered concerns around range anxiety, and that EV ownership and V2G trial participation leads to a 15%–35% increase in stated willingness to participate in V2G or Smart Charging as compared to a 2013 baseline. Additionally, it is demonstrated that the strongest single predictor for V2G willingness is whether the consumer believes that V2G can contributes to a stable electricity system. These results suggest that education around V2G benefits and allowing consumers to test V2G before committing could be key factors in increasing adoption. We also highlight the importance of data privacy, which for some consumers contributes towards a negative attitude towards V2G. We release the raw survey data and code with this manuscript.

Suggested Citation

  • Neaimeh, Myriam & Crozier, Constance & Deakin, Matthew, 2025. "Learning by charging: Understanding consumers’ changing attitudes towards vehicle-to-grid," Applied Energy, Elsevier, vol. 382(C).
  • Handle: RePEc:eee:appene:v:382:y:2025:i:c:s0306261924025674
    DOI: 10.1016/j.apenergy.2024.125183
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924025674
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125183?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frederiks, Elisha R. & Stenner, Karen & Hobman, Elizabeth V., 2015. "Household energy use: Applying behavioural economics to understand consumer decision-making and behaviour," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1385-1394.
    2. Das, Ridoy & Wang, Yue & Putrus, Ghanim & Kotter, Richard & Marzband, Mousa & Herteleer, Bert & Warmerdam, Jos, 2020. "Multi-objective techno-economic-environmental optimisation of electric vehicle for energy services," Applied Energy, Elsevier, vol. 257(C).
    3. Sagaria, Shemin & van der Kam, Mart & Boström, Tobias, 2025. "Vehicle-to-grid impact on battery degradation and estimation of V2G economic compensation," Applied Energy, Elsevier, vol. 377(PB).
    4. Crozier, Constance & Morstyn, Thomas & McCulloch, Malcolm, 2020. "The opportunity for smart charging to mitigate the impact of electric vehicles on transmission and distribution systems," Applied Energy, Elsevier, vol. 268(C).
    5. Heilmann, C. & Friedl, G., 2021. "Factors influencing the economic success of grid-to-vehicle and vehicle-to-grid applications—A review and meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    6. Mehdizadeh, Milad & Nordfjaern, Trond & Klöckner, Christian A., 2023. "Estimating financial compensation and minimum guaranteed charge for vehicle-to-grid technology," Energy Policy, Elsevier, vol. 180(C).
    7. Hidrue, Michael K. & Parsons, George R., 2015. "Is there a near-term market for vehicle-to-grid electric vehicles?," Applied Energy, Elsevier, vol. 151(C), pages 67-76.
    8. Geske, Joachim & Schumann, Diana, 2018. "Willing to participate in vehicle-to-grid (V2G)? Why not!," Energy Policy, Elsevier, vol. 120(C), pages 392-401.
    9. Uddin, Kotub & Jackson, Tim & Widanage, Widanalage D. & Chouchelamane, Gael & Jennings, Paul A. & Marco, James, 2017. "On the possibility of extending the lifetime of lithium-ion batteries through optimal V2G facilitated by an integrated vehicle and smart-grid system," Energy, Elsevier, vol. 133(C), pages 710-722.
    10. Chen, Chien-fei & Zarazua de Rubens, Gerardo & Noel, Lance & Kester, Johannes & Sovacool, Benjamin K., 2020. "Assessing the socio-demographic, technical, economic and behavioral factors of Nordic electric vehicle adoption and the influence of vehicle-to-grid preferences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    11. Crozier, Constance & Morstyn, Thomas & Deakin, Matthew & McCulloch, Malcolm, 2020. "The case for Bi-directional charging of electric vehicles in low voltage distribution networks," Applied Energy, Elsevier, vol. 259(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Wonjong & Woo, JongRoul & Kim, Yong-gun & Koo, Yoonmo, 2024. "Vehicle-to-grid as a competitive alternative to energy storage in a renewable-dominant power system: An integrated approach considering both electric vehicle drivers' willingness and effectiveness," Energy, Elsevier, vol. 310(C).
    2. Andre Leippi & Markus Fleschutz & Michael D. Murphy, 2022. "A Review of EV Battery Utilization in Demand Response Considering Battery Degradation in Non-Residential Vehicle-to-Grid Scenarios," Energies, MDPI, vol. 15(9), pages 1-22, April.
    3. Signer, Tim & Baumgartner, Nora & Ruppert, Manuel & Sandmeier, Thorben & Fichtner, Wolf, 2024. "Modeling V2G spot market trading: The impact of charging tariffs on economic viability," Energy Policy, Elsevier, vol. 189(C).
    4. Sabadini, Felipe & Madlener, Reinhard, 2025. "Does taxation hamper the vehicle-to-grid business case? Empirical evidence from Germany," Applied Energy, Elsevier, vol. 381(C).
    5. Mousavizade, Mirsaeed & Bai, Feifei & Garmabdari, Rasoul & Sanjari, Mohammad & Taghizadeh, Foad & Mahmoudian, Ali & Lu, Junwei, 2023. "Adaptive control of V2Gs in islanded microgrids incorporating EV owner expectations," Applied Energy, Elsevier, vol. 341(C).
    6. Park, Sung-Won & Yu, Jung-Un & Lee, Jin-Wook & Son, Sung-Yong, 2024. "A comprehensive review of battery-based power service applications considering degradation: Research status and model integration," Applied Energy, Elsevier, vol. 374(C).
    7. Jasmine Ramsebner & Albert Hiesl & Reinhard Haas, 2020. "Efficient Load Management for BEV Charging Infrastructure in Multi-Apartment Buildings," Energies, MDPI, vol. 13(22), pages 1-23, November.
    8. Zhou, Sixun & Yan, Rujing & Zhang, Jing & He, Yu & Geng, Xianxian & Li, Yuanbo & Yu, Changkun, 2025. "Optimizing interaction in renewable-vehicle-microgrid systems: Balancing battery health, user satisfaction, and participation," Renewable Energy, Elsevier, vol. 245(C).
    9. Mehdizadeh, Milad & Nayum, Alim & Nordfjærn, Trond & Klöckner, Christian A., 2024. "Are Norwegian car users ready for a transition to vehicle-to-grid technology?," Transport Policy, Elsevier, vol. 146(C), pages 126-136.
    10. Wei, Hongqian & Zhang, Youtong & Wang, Yongzhen & Hua, Weiqi & Jing, Rui & Zhou, Yue, 2022. "Planning integrated energy systems coupling V2G as a flexible storage," Energy, Elsevier, vol. 239(PB).
    11. Yumiko Iwafune & Kazuhiko Ogimoto, 2020. "Economic Impacts of the Demand Response of Electric Vehicles Considering Battery Degradation," Energies, MDPI, vol. 13(21), pages 1-19, November.
    12. Singh, Kamini & Singh, Anoop, 2022. "Behavioural modelling for personal and societal benefits of V2G/V2H integration on EV adoption," Applied Energy, Elsevier, vol. 319(C).
    13. Sagaria, Shemin & van der Kam, Mart & Boström, Tobias, 2024. "The influence of socio-technical variables on vehicle-to-grid technology," Energy, Elsevier, vol. 305(C).
    14. Brian Azzopardi & Yesbol Gabdullin, 2024. "Impacts of Electric Vehicles Charging in Low-Voltage Distribution Networks: A Case Study in Malta," Energies, MDPI, vol. 17(2), pages 1-18, January.
    15. Leippi, Andre & Fleschutz, Markus & Davis, Kevin & Klingler, Anna-Lena & Murphy, Michael D., 2024. "Optimizing electric vehicle fleet integration in industrial demand response: Maximizing vehicle-to-grid benefits while compensating vehicle owners for battery degradation," Applied Energy, Elsevier, vol. 374(C).
    16. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo, 2020. "Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    17. Kumar, Gokula Manikandan Senthil & Guo, Xinman & Zhou, Shijie & Luo, Haojie & Wu, Qi & Liu, Yulin & Dou, Zhenyu & Pan, Kai & Xu, Yang & Yang, Hongxing & Cao, Sunliang, 2025. "State-of-the-art review of smart energy management systems for supporting zero-emission electric vehicles with X2V and V2X interactions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    18. Hu, Yang & Bahamonde-Birke, Francisco J. & Ettema, Dick, 2025. "Vehicle-to-grid, why not? An interview with battery electric vehicle users with various driving patterns in Utrecht, the Netherlands," Transport Policy, Elsevier, vol. 164(C), pages 231-240.
    19. Khardenavis, Amaiya & Hewage, Kasun & Perera, Piyaruwan & Shotorbani, Amin Mohammadpour & Sadiq, Rehan, 2021. "Mobile energy hub planning for complex urban networks: A robust optimization approach," Energy, Elsevier, vol. 235(C).
    20. Helferich, Marvin & Tröger, Josephine & Stephan, Annegret & Preuß, Sabine & Pelka, Sabine & Stute, Judith & Plötz, Patrick, 2024. "Tariff option preferences for smart and bidirectional charging: Evidence from battery electric vehicle users in Germany," Energy Policy, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:382:y:2025:i:c:s0306261924025674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.