IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v153y2018icp628-637.html
   My bibliography  Save this article

Optimizing innovation, carbon and health in transport: Assessing socially optimal electric mobility and vehicle-to-grid pathways in Denmark

Author

Listed:
  • Noel, Lance
  • Zarazua de Rubens, Gerardo
  • Sovacool, Benjamin K.

Abstract

This paper examines the social costs and benefits of potential configurations of electric vehicle deployment, including and excluding vehicle-to-grid. To fully explore the benefits and costs of different electric vehicle pathways, four different scenarios are devised with both today's and 2030 electricity grid in Denmark. These scenarios combine different levels of electric vehicle implementation and communication ability, i.e. smart charging or full bi-directionality, and then paired with different levels of future renewable energy implementation. Then, the societal costs of all scenarios are calculated, including carbon and health externalities to find the least-cost mix of electric vehicles for society. The most cost-effective penetration of electric vehicles in the near future is found to be 27%, increasing to 75% by 2030. This would equate to a $34 billion reduction to societal costs in 2030, a decrease of 30% compared to business as usual. This represents a projected annual savings per vehicle of $1200 in 2030. However, current vehicle capital cost differences, a lack of willingness to pay for electric vehicles, and consumer discount rates are substantial barriers to electric vehicle deployment in Denmark in the near term.

Suggested Citation

  • Noel, Lance & Zarazua de Rubens, Gerardo & Sovacool, Benjamin K., 2018. "Optimizing innovation, carbon and health in transport: Assessing socially optimal electric mobility and vehicle-to-grid pathways in Denmark," Energy, Elsevier, vol. 153(C), pages 628-637.
  • Handle: RePEc:eee:energy:v:153:y:2018:i:c:p:628-637
    DOI: 10.1016/j.energy.2018.04.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218306832
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.04.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mai, Trieu & Mulcahy, David & Hand, M. Maureen & Baldwin, Samuel F., 2014. "Envisioning a renewable electricity future for the United States," Energy, Elsevier, vol. 65(C), pages 374-386.
    2. Lund, Henrik & Kempton, Willett, 2008. "Integration of renewable energy into the transport and electricity sectors through V2G," Energy Policy, Elsevier, vol. 36(9), pages 3578-3587, September.
    3. Sovacool, Benjamin K. & Kester, Johannes & de Rubens, Gerardo Zarazua & Noel, Lance, 2018. "Expert perceptions of low-carbon transitions: Investigating the challenges of electricity decarbonisation in the Nordic region," Energy, Elsevier, vol. 148(C), pages 1162-1172.
    4. Sovacool, Benjamin K., 2017. "Contestation, contingency, and justice in the Nordic low-carbon energy transition," Energy Policy, Elsevier, vol. 102(C), pages 569-582.
    5. Elliston, Ben & MacGill, Iain & Diesendorf, Mark, 2013. "Least cost 100% renewable electricity scenarios in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 59(C), pages 270-282.
    6. Graabak, Ingeborg & Wu, Qiuwei & Warland, Leif & Liu, Zhaoxi, 2016. "Optimal planning of the Nordic transmission system with 100% electric vehicle penetration of passenger cars by 2050," Energy, Elsevier, vol. 107(C), pages 648-660.
    7. Seddig, Katrin & Jochem, Patrick & Fichtner, Wolf, 2017. "Integrating renewable energy sources by electric vehicle fleets under uncertainty," Energy, Elsevier, vol. 141(C), pages 2145-2153.
    8. Willett Kempton & Yannick Perez & Marc Petit, 2014. "Public Policy for Electric Vehicles and for Vehicle to GridPower," Post-Print hal-01783940, HAL.
    9. Hunt Allcott & Nathan Wozny, 2014. "Gasoline Prices, Fuel Economy, and the Energy Paradox," The Review of Economics and Statistics, MIT Press, vol. 96(5), pages 779-795, December.
    10. Hidrue, Michael K. & Parsons, George R. & Kempton, Willett & Gardner, Meryl P., 2011. "Willingness to pay for electric vehicles and their attributes," Resource and Energy Economics, Elsevier, vol. 33(3), pages 686-705, September.
    11. Alexander E. MacDonald & Christopher T. M. Clack & Anneliese Alexander & Adam Dunbar & James Wilczak & Yuanfu Xie, 2016. "Future cost-competitive electricity systems and their impact on US CO2 emissions," Nature Climate Change, Nature, vol. 6(5), pages 526-531, May.
    12. Yannick Perez, 2013. "Public Policy Strategies for Electric Vehicles and for Vehicle to Grid Power," Post-Print hal-01660410, HAL.
    13. Jerry A. Hausman, 1979. "Individual Discount Rates and the Purchase and Utilization of Energy-Using Durables," Bell Journal of Economics, The RAND Corporation, vol. 10(1), pages 33-54, Spring.
    14. Schroeder, Andreas & Traber, Thure, 2012. "The economics of fast charging infrastructure for electric vehicles," Energy Policy, Elsevier, vol. 43(C), pages 136-144.
    15. Willett Kempton & Yannick Perez & Marc Petit, 2014. "Public Policy for Electric Vehicles and for Vehicle to GridPower," Revue d'économie industrielle, De Boeck Université, vol. 0(4), pages 263-290.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hajebrahimi, Ali & Kamwa, Innocent & Huneault, Maurice, 2018. "A novel approach for plug-in electric vehicle planning and electricity load management in presence of a clean disruptive technology," Energy, Elsevier, vol. 158(C), pages 975-985.
    2. Sovacool, Benjamin K. & Turnheim, Bruno & Hook, Andrew & Brock, Andrea & Martiskainen, Mari, 2021. "Dispossessed by decarbonisation: Reducing vulnerability, injustice, and inequality in the lived experience of low-carbon pathways," World Development, Elsevier, vol. 137(C).
    3. Katarzyna Nosal Hoy & Katarzyna Solecka & Andrzej Szarata, 2019. "The Application of the Multiple Criteria Decision Aid to Assess Transport Policy Measures Focusing on Innovation," Sustainability, MDPI, vol. 11(5), pages 1-23, March.
    4. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & de Rubens, Gerardo Zarazua, 2019. "Energy Injustice and Nordic Electric Mobility: Inequality, Elitism, and Externalities in the Electrification of Vehicle-to-Grid (V2G) Transport," Ecological Economics, Elsevier, vol. 157(C), pages 205-217.
    5. Zarazua de Rubens, Gerardo, 2019. "Who will buy electric vehicles after early adopters? Using machine learning to identify the electric vehicle mainstream market," Energy, Elsevier, vol. 172(C), pages 243-254.
    6. Sovacool, Benjamin K. & Martiskainen, Mari & Hook, Andrew & Baker, Lucy, 2020. "Beyond cost and carbon: The multidimensional co-benefits of low carbon transitions in Europe," Ecological Economics, Elsevier, vol. 169(C).
    7. Englberger, Stefan & Abo Gamra, Kareem & Tepe, Benedikt & Schreiber, Michael & Jossen, Andreas & Hesse, Holger, 2021. "Electric vehicle multi-use: Optimizing multiple value streams using mobile storage systems in a vehicle-to-grid context," Applied Energy, Elsevier, vol. 304(C).
    8. Sovacool, Benjamin K. & Noel, Lance & Kester, Johannes & Zarazua de Rubens, Gerardo, 2018. "Reviewing Nordic transport challenges and climate policy priorities: Expert perceptions of decarbonisation in Denmark, Finland, Iceland, Norway, Sweden," Energy, Elsevier, vol. 165(PA), pages 532-542.
    9. Krumm, Alexandra & Süsser, Diana & Blechinger, Philipp, 2022. "Modelling social aspects of the energy transition: What is the current representation of social factors in energy models?," Energy, Elsevier, vol. 239(PA).
    10. Zarazua de Rubens, Gerardo & Noel, Lance & Kester, Johannes & Sovacool, Benjamin K., 2020. "The market case for electric mobility: Investigating electric vehicle business models for mass adoption," Energy, Elsevier, vol. 194(C).
    11. Muhammad Huda & Tokimatsu Koji & Muhammad Aziz, 2020. "Techno Economic Analysis of Vehicle to Grid (V2G) Integration as Distributed Energy Resources in Indonesia Power System," Energies, MDPI, vol. 13(5), pages 1-16, March.
    12. Noel, Lance & Papu Carrone, Andrea & Jensen, Anders Fjendbo & Zarazua de Rubens, Gerardo & Kester, Johannes & Sovacool, Benjamin K., 2019. "Willingness to pay for electric vehicles and vehicle-to-grid applications: A Nordic choice experiment," Energy Economics, Elsevier, vol. 78(C), pages 525-534.
    13. Abd Alla, Sara & Bianco, Vincenzo & Tagliafico, Luca A. & Scarpa, Federico, 2021. "Pathways to electric mobility integration in the Italian automotive sector," Energy, Elsevier, vol. 221(C).
    14. Cesar Diaz-Londono & Luigi Colangelo & Fredy Ruiz & Diego Patino & Carlo Novara & Gianfranco Chicco, 2019. "Optimal Strategy to Exploit the Flexibility of an Electric Vehicle Charging Station," Energies, MDPI, vol. 12(20), pages 1-29, October.
    15. Choi, Minje & Ku, DongGyun & Kim, Sion & Kwak, Juhyeon & Jang, Yoonjung & Lee, Doyun & Lee, Seungjae, 2023. "Action plans on the reduction of mobility energy consumption based on personal mobility activation," Energy, Elsevier, vol. 263(PD).
    16. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo, 2020. "Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    17. Guido Ala & Ilhami Colak & Gabriella Di Filippo & Rosario Miceli & Pietro Romano & Carla Silva & Stanimir Valtchev & Fabio Viola, 2021. "Electric Mobility in Portugal: Current Situation and Forecasts for Fuel Cell Vehicles," Energies, MDPI, vol. 14(23), pages 1-23, November.
    18. Benjamin K. Sovacool & Mari Martiskainen & Andrew Hook & Lucy Baker, 2019. "Decarbonization and its discontents: a critical energy justice perspective on four low-carbon transitions," Climatic Change, Springer, vol. 155(4), pages 581-619, August.
    19. Jannati, Jamil & Nazarpour, Daryoush, 2018. "Multi-objective scheduling of electric vehicles intelligent parking lot in the presence of hydrogen storage system under peak load management," Energy, Elsevier, vol. 163(C), pages 338-350.
    20. Schwab, Julia & Sölch, Christian & Zöttl, Gregor, 2022. "Electric Vehicle Cost in 2035: The impact of market penetration and charging strategies," Energy Economics, Elsevier, vol. 114(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meilinda Fitriani Nur Maghfiroh & Andante Hadi Pandyaswargo & Hiroshi Onoda, 2021. "Current Readiness Status of Electric Vehicles in Indonesia: Multistakeholder Perceptions," Sustainability, MDPI, vol. 13(23), pages 1-25, November.
    2. Noel, Lance & Papu Carrone, Andrea & Jensen, Anders Fjendbo & Zarazua de Rubens, Gerardo & Kester, Johannes & Sovacool, Benjamin K., 2019. "Willingness to pay for electric vehicles and vehicle-to-grid applications: A Nordic choice experiment," Energy Economics, Elsevier, vol. 78(C), pages 525-534.
    3. Noel, Lance & Brodie, Joseph F. & Kempton, Willett & Archer, Cristina L. & Budischak, Cory, 2017. "Cost minimization of generation, storage, and new loads, comparing costs with and without externalities," Applied Energy, Elsevier, vol. 189(C), pages 110-121.
    4. P Codani & Marc Petit & Yannick Perez, 2018. "Innovation et règles inefficaces : le cas des véhicules électriques," Post-Print halshs-01980639, HAL.
    5. Yannick Perez & Wale Arowolo, 2021. "Economics of Electric Mobility: Utilities and Electric mobility," Working Papers hal-03522048, HAL.
    6. Sovacool, Benjamin K. & Noel, Lance & Kester, Johannes & Zarazua de Rubens, Gerardo, 2018. "Reviewing Nordic transport challenges and climate policy priorities: Expert perceptions of decarbonisation in Denmark, Finland, Iceland, Norway, Sweden," Energy, Elsevier, vol. 165(PA), pages 532-542.
    7. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & de Rubens, Gerardo Zarazua, 2019. "Energy Injustice and Nordic Electric Mobility: Inequality, Elitism, and Externalities in the Electrification of Vehicle-to-Grid (V2G) Transport," Ecological Economics, Elsevier, vol. 157(C), pages 205-217.
    8. Todd D. Gerarden & Richard G. Newell & Robert N. Stavins, 2017. "Assessing the Energy-Efficiency Gap," Journal of Economic Literature, American Economic Association, vol. 55(4), pages 1486-1525, December.
    9. Jenkins, J.D. & Zhou, Z. & Ponciroli, R. & Vilim, R.B. & Ganda, F. & de Sisternes, F. & Botterud, A., 2018. "The benefits of nuclear flexibility in power system operations with renewable energy," Applied Energy, Elsevier, vol. 222(C), pages 872-884.
    10. Ramos-Real, Francisco J. & Ramírez-Díaz, Alfredo & Marrero, Gustavo A. & Perez, Yannick, 2018. "Willingness to pay for electric vehicles in island regions: The case of Tenerife (Canary Islands)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 140-149.
    11. Shanjun Li & Joshua Linn & Erich Muehlegger, 2014. "Gasoline Taxes and Consumer Behavior," American Economic Journal: Economic Policy, American Economic Association, vol. 6(4), pages 302-342, November.
    12. Schleich, Joachim & Gassmann, Xavier & Faure, Corinne & Meissner, Thomas, 2016. "Making the implicit explicit: A look inside the implicit discount rate," Energy Policy, Elsevier, vol. 97(C), pages 321-331.
    13. Sallee, James M. & West, Sarah E. & Fan, Wei, 2016. "Do consumers recognize the value of fuel economy? Evidence from used car prices and gasoline price fluctuations," Journal of Public Economics, Elsevier, vol. 135(C), pages 61-73.
    14. Lenzen, Manfred & McBain, Bonnie & Trainer, Ted & Jütte, Silke & Rey-Lescure, Olivier & Huang, Jing, 2016. "Simulating low-carbon electricity supply for Australia," Applied Energy, Elsevier, vol. 179(C), pages 553-564.
    15. Huang, Shisheng & Safiullah, Hameed & Xiao, Jingjie & Hodge, Bri-Mathias S. & Hoffman, Ray & Soller, Joan & Jones, Doug & Dininger, Dennis & Tyner, Wallace E. & Liu, Andrew & Pekny, Joseph F., 2012. "The effects of electric vehicles on residential households in the city of Indianapolis," Energy Policy, Elsevier, vol. 49(C), pages 442-455.
    16. Jacobsen, Grant D., 2015. "Do energy prices influence investment in energy efficiency? Evidence from energy star appliances," Journal of Environmental Economics and Management, Elsevier, vol. 74(C), pages 94-106.
    17. Rahman, Imran & Vasant, Pandian M. & Singh, Balbir Singh Mahinder & Abdullah-Al-Wadud, M. & Adnan, Nadia, 2016. "Review of recent trends in optimization techniques for plug-in hybrid, and electric vehicle charging infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1039-1047.
    18. Houde, Sébastien & Myers, Erica, 2021. "Are consumers attentive to local energy costs? Evidence from the appliance market," Journal of Public Economics, Elsevier, vol. 201(C).
    19. Pavan, Giulia, 2017. "Green Car Adoption and the Supply of Alternative Fuels," TSE Working Papers 17-875, Toulouse School of Economics (TSE).
    20. Soren T. Anderson & Ian W. H. Parry & James M. Sallee & Carolyn Fischer, 2011. "Automobile Fuel Economy Standards: Impacts, Efficiency, and Alternatives," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(1), pages 89-108, Winter.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:153:y:2018:i:c:p:628-637. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.