IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v49y2012icp442-455.html
   My bibliography  Save this article

The effects of electric vehicles on residential households in the city of Indianapolis

Author

Listed:
  • Huang, Shisheng
  • Safiullah, Hameed
  • Xiao, Jingjie
  • Hodge, Bri-Mathias S.
  • Hoffman, Ray
  • Soller, Joan
  • Jones, Doug
  • Dininger, Dennis
  • Tyner, Wallace E.
  • Liu, Andrew
  • Pekny, Joseph F.

Abstract

There is an increasing impetus to transform the U.S transportation sector and transition away from the uncertainties of oil supply. One of the most viable current solutions is the adoption of electric vehicles (EVs). These vehicles allow for a transportation system that would be flexible in its fuel demands. However, utilities may need to address questions such as distribution constraints, electricity tariffs and incentives and public charging locations before large scale electric vehicle adoption can be realized. In this study, the effect of electric vehicles on households in Indianapolis is examined. A four-step traffic flow model is used to characterize the usage characteristics of vehicles in the Indianapolis metropolitan area. This data is then used to simulate EV usage patterns which can be used to determine household electricity usage characteristics. These results are differentiated by the zones with which the households are associated. Economic costs are then calculated for the individual households. Finally, possible public charging locations are examined.

Suggested Citation

  • Huang, Shisheng & Safiullah, Hameed & Xiao, Jingjie & Hodge, Bri-Mathias S. & Hoffman, Ray & Soller, Joan & Jones, Doug & Dininger, Dennis & Tyner, Wallace E. & Liu, Andrew & Pekny, Joseph F., 2012. "The effects of electric vehicles on residential households in the city of Indianapolis," Energy Policy, Elsevier, vol. 49(C), pages 442-455.
  • Handle: RePEc:eee:enepol:v:49:y:2012:i:c:p:442-455
    DOI: 10.1016/j.enpol.2012.06.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512005496
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.06.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hidrue, Michael K. & Parsons, George R. & Kempton, Willett & Gardner, Meryl P., 2011. "Willingness to pay for electric vehicles and their attributes," Resource and Energy Economics, Elsevier, vol. 33(3), pages 686-705, September.
    2. Hunt Allcott & Nathan Wozny, 2014. "Gasoline Prices, Fuel Economy, and the Energy Paradox," The Review of Economics and Statistics, MIT Press, vol. 96(5), pages 779-795, December.
    3. Turrentine, Thomas S. & Kurani, Kenneth S., 2007. "Car buyers and fuel economy?," Energy Policy, Elsevier, vol. 35(2), pages 1213-1223, February.
    4. Wang, Jianhui & Liu, Cong & Ton, Dan & Zhou, Yan & Kim, Jinho & Vyas, Anantray, 2011. "Impact of plug-in hybrid electric vehicles on power systems with demand response and wind power," Energy Policy, Elsevier, vol. 39(7), pages 4016-4021, July.
    5. Gallagher, Kelly Sims & Muehlegger, Erich, 2011. "Giving green to get green? Incentives and consumer adoption of hybrid vehicle technology," Journal of Environmental Economics and Management, Elsevier, vol. 61(1), pages 1-15, January.
    6. Turrentine, Tom & Kurani, Kenneth S, 2007. "Car buyers and fuel economy?," Institute of Transportation Studies, Working Paper Series qt56x845v4, Institute of Transportation Studies, UC Davis.
    7. Sioshansi, Ramteen & Fagiani, Riccardo & Marano, Vincenzo, 2010. "Cost and emissions impacts of plug-in hybrid vehicles on the Ohio power system," Energy Policy, Elsevier, vol. 38(11), pages 6703-6712, November.
    8. Huang, Shisheng & Hodge, Bri-Mathias S. & Taheripour, Farzad & Pekny, Joseph F. & Reklaitis, Gintaras V. & Tyner, Wallace E., 2011. "The effects of electricity pricing on PHEV competitiveness," Energy Policy, Elsevier, vol. 39(3), pages 1552-1561, March.
    9. Lidicker, Jeffrey R. & Lipman, Timothy E. & Shaheen, Susan A., 2010. "Economic Assessment of Electric-Drive Vehicle Operation in California and the United States," Institute of Transportation Studies, Working Paper Series qt06z967zb, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
    2. Satre-Meloy, Aven, 2019. "Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models," Energy, Elsevier, vol. 174(C), pages 148-168.
    3. Sujie Shao & Shaoyong Guo & Xuesong Qiu, 2017. "A Mobile Battery Swapping Service for Electric Vehicles Based on a Battery Swapping Van," Energies, MDPI, vol. 10(10), pages 1-21, October.
    4. Martos, A. & Pacheco-Torres, R. & Ordóñez, J. & Jadraque-Gago, E., 2016. "Towards successful environmental performance of sustainable cities: Intervening sectors. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 479-495.
    5. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    6. Jung, Jaesung & Cho, Yongju & Cheng, Danling & Onen, Ahmet & Arghandeh, Reza & Dilek, Murat & Broadwater, Robert P., 2013. "Monte Carlo analysis of Plug-in Hybrid Vehicles and Distributed Energy Resource growth with residential energy storage in Michigan," Applied Energy, Elsevier, vol. 108(C), pages 218-235.
    7. Requia, Weeberb J. & Adams, Matthew D. & Arain, Altaf & Koutrakis, Petros & Ferguson, Mark, 2017. "Carbon dioxide emissions of plug-in hybrid electric vehicles: A life-cycle analysis in eight Canadian cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1390-1396.
    8. Xiao, Jingjie, 2013. "Grid integration and smart grid implementation of emerging technologies in electric power systems through approximate dynamic programming," MPRA Paper 58696, University Library of Munich, Germany.
    9. Muhammad Naveed Iqbal & Lauri Kütt & Matti Lehtonen & Robert John Millar & Verner Püvi & Anton Rassõlkin & Galina L. Demidova, 2021. "Travel Activity Based Stochastic Modelling of Load and Charging State of Electric Vehicles," Sustainability, MDPI, vol. 13(3), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shanyong Wang & Jin Fan & Dingtao Zhao & Shu Yang & Yuanguang Fu, 2016. "Predicting consumers’ intention to adopt hybrid electric vehicles: using an extended version of the theory of planned behavior model," Transportation, Springer, vol. 43(1), pages 123-143, January.
    2. Kumar Shalender & Naman Sharma, 2021. "Using extended theory of planned behaviour (TPB) to predict adoption intention of electric vehicles in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 665-681, January.
    3. Seiho Kim & Jaesik Lee & Chulung Lee, 2017. "Does Driving Range of Electric Vehicles Influence Electric Vehicle Adoption?," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    4. Sierzchula, William & Bakker, Sjoerd & Maat, Kees & van Wee, Bert, 2014. "The influence of financial incentives and other socio-economic factors on electric vehicle adoption," Energy Policy, Elsevier, vol. 68(C), pages 183-194.
    5. Shanyong Wang & Jin Fan & Dingtao Zhao & Shu Yang & Yuanguang Fu, 2016. "Predicting consumers’ intention to adopt hybrid electric vehicles: using an extended version of the theory of planned behavior model," Transportation, Springer, vol. 43(1), pages 123-143, January.
    6. Alberini, Anna & Di Cosmo, Valeria & Bigano, Andrea, 2019. "How are fuel efficient cars priced? Evidence from eight EU countries," Energy Policy, Elsevier, vol. 134(C).
    7. Krupa, Joseph S. & Rizzo, Donna M. & Eppstein, Margaret J. & Brad Lanute, D. & Gaalema, Diann E. & Lakkaraju, Kiran & Warrender, Christina E., 2014. "Analysis of a consumer survey on plug-in hybrid electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 14-31.
    8. Berliner, Rosaria, 2018. "Drivers of Change in a World of Mobility Disruption: An Overview of Long Distance Travel, Shared Mobility, and Automated Vehicles," Institute of Transportation Studies, Working Paper Series qt6r64v86z, Institute of Transportation Studies, UC Davis.
    9. Larson, Paul D. & Viáfara, Jairo & Parsons, Robert V. & Elias, Arne, 2014. "Consumer attitudes about electric cars: Pricing analysis and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 299-314.
    10. Ozaki, Ritsuko & Sevastyanova, Katerina, 2011. "Going hybrid: An analysis of consumer purchase motivations," Energy Policy, Elsevier, vol. 39(5), pages 2217-2227, May.
    11. Sun, Shanxia & Delgado, Michael & Khanna, Neha, 2017. "Hybrid Vehicles and Household Driving Behavior: Implications for Miles Traveled and Gasoline Consumption," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258502, Agricultural and Applied Economics Association.
    12. Leard, Benjamin, 2018. "Consumer inattention and the demand for vehicle fuel cost savings," Journal of choice modelling, Elsevier, vol. 29(C), pages 1-16.
    13. Egbue, Ona & Long, Suzanna, 2012. "Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions," Energy Policy, Elsevier, vol. 48(C), pages 717-729.
    14. Tilov, Ivan & Weber, Sylvain, 2023. "Heterogeneity in price elasticity of vehicle kilometers traveled: Evidence from micro-level panel data," Energy Economics, Elsevier, vol. 127(PA).
    15. James M. Sallee, 2014. "Rational Inattention and Energy Efficiency," Journal of Law and Economics, University of Chicago Press, vol. 57(3), pages 781-820.
    16. James M. Sallee, 2011. "The Taxation of Fuel Economy," Tax Policy and the Economy, University of Chicago Press, vol. 25(1), pages 1-38.
    17. Bansal, Prateek & Kumar, Rajeev Ranjan & Raj, Alok & Dubey, Subodh & Graham, Daniel J., 2021. "Willingness to pay and attitudinal preferences of Indian consumers for electric vehicles," Energy Economics, Elsevier, vol. 100(C).
    18. Goldschmidt, Rüdiger & Richter, Andreas & Pfeil, Raphael, 2019. "Active stakeholder involvement and organisational tasks as factors for an effective communication and governance strategy in the promotion of e-taxis. Results from a field research lab," Energy Policy, Elsevier, vol. 135(C).
    19. Carley, Sanya & Zirogiannis, Nikolaos & Siddiki, Saba & Duncan, Denvil & Graham, John D., 2019. "Overcoming the shortcomings of U.S. plug-in electric vehicle policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    20. Anna Alberini, Markus Bareit and Massimo Filippini, 2016. "What is the Effect of Fuel Efficiency Information on Car Prices? Evidence from Switzerland," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:49:y:2012:i:c:p:442-455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.