IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v78y2019icp525-534.html
   My bibliography  Save this article

Willingness to pay for electric vehicles and vehicle-to-grid applications: A Nordic choice experiment

Author

Listed:
  • Noel, Lance
  • Papu Carrone, Andrea
  • Jensen, Anders Fjendbo
  • Zarazua de Rubens, Gerardo
  • Kester, Johannes
  • Sovacool, Benjamin K.

Abstract

We present the results from a choice experiment conducted across Denmark Finland, Iceland, Norway and Sweden focusing on electric vehicles and vehicle-to-grid technology. The survey involved the entire Nordic region and had >4000 respondents choosing between two versions of electric vehicles (some including vehicle-to-grid capability) as well as their preferred gasoline vehicle. We analyzed the data using a mixed logit model and present the willingness to pay for driving range, acceleration, recharging time, fuel source, and vehicle-to-grid capability. In addition, due to the cross-national nature of our data, we also present willingness-to-pay comparisons between the five Nordic countries. We find that certain attributes, like driving range and recharging time, are substantially higher than previous estimates, whereas others, like acceleration are lower. In addition, we find that some attributes vary across the five countries (such as driving range), whereas other attributes remain constant. Finally, we find that vehicle-to-grid capability, divorced of onerous contracts, is significantly positive, but only for some countries, whereas in other countries it has no value, implying greater education and awareness of vehicle-to-grid is necessary if it is to accelerate electric vehicle adoption.

Suggested Citation

  • Noel, Lance & Papu Carrone, Andrea & Jensen, Anders Fjendbo & Zarazua de Rubens, Gerardo & Kester, Johannes & Sovacool, Benjamin K., 2019. "Willingness to pay for electric vehicles and vehicle-to-grid applications: A Nordic choice experiment," Energy Economics, Elsevier, vol. 78(C), pages 525-534.
  • Handle: RePEc:eee:eneeco:v:78:y:2019:i:c:p:525-534
    DOI: 10.1016/j.eneco.2018.12.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988318304961
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2018.12.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Egbue, Ona & Long, Suzanna, 2012. "Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions," Energy Policy, Elsevier, vol. 48(C), pages 717-729.
    2. Dimitropoulos, Alexandros & Rietveld, Piet & van Ommeren, Jos N., 2013. "Consumer valuation of changes in driving range: A meta-analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 55(C), pages 27-45.
    3. Hackbarth, André & Madlener, Reinhard, 2016. "Willingness-to-pay for alternative fuel vehicle characteristics: A stated choice study for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 89-111.
    4. Axsen, Jonn & Mountain, Dean C. & Jaccard, Mark, 2009. "Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles," Institute of Transportation Studies, Working Paper Series qt02n9j6cv, Institute of Transportation Studies, UC Davis.
    5. Franke, Thomas & Krems, Josef F., 2013. "Interacting with limited mobility resources: Psychological range levels in electric vehicle use," Transportation Research Part A: Policy and Practice, Elsevier, vol. 48(C), pages 109-122.
    6. Parsons, George R. & Hidrue, Michael K. & Kempton, Willett & Gardner, Meryl P., 2014. "Willingness to pay for vehicle-to-grid (V2G) electric vehicles and their contract terms," Energy Economics, Elsevier, vol. 42(C), pages 313-324.
    7. Axsen, Jonn & Mountain, Dean C. & Jaccard, Mark, 2009. "Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles," Resource and Energy Economics, Elsevier, vol. 31(3), pages 221-238, August.
    8. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, January.
    9. Mickael Bech & Trine Kjaer & Jørgen Lauridsen, 2011. "Does the number of choice sets matter? Results from a web survey applying a discrete choice experiment," Health Economics, John Wiley & Sons, Ltd., vol. 20(3), pages 273-286, March.
    10. Ma, Chunbo & Rogers, Abbie A. & Kragt, Marit E. & Zhang, Fan & Polyakov, Maksym & Gibson, Fiona & Chalak, Morteza & Pandit, Ram & Tapsuwan, Sorada, 2015. "Consumers’ willingness to pay for renewable energy: A meta-regression analysis," Resource and Energy Economics, Elsevier, vol. 42(C), pages 93-109.
    11. Hunt Allcott & Nathan Wozny, 2014. "Gasoline Prices, Fuel Economy, and the Energy Paradox," The Review of Economics and Statistics, MIT Press, vol. 96(5), pages 779-795, December.
    12. Hidrue, Michael K. & Parsons, George R. & Kempton, Willett & Gardner, Meryl P., 2011. "Willingness to pay for electric vehicles and their attributes," Resource and Energy Economics, Elsevier, vol. 33(3), pages 686-705, September.
    13. Noel, Lance & Brodie, Joseph F. & Kempton, Willett & Archer, Cristina L. & Budischak, Cory, 2017. "Cost minimization of generation, storage, and new loads, comparing costs with and without externalities," Applied Energy, Elsevier, vol. 189(C), pages 110-121.
    14. Fanchao Liao & Eric Molin & Bert van Wee, 2017. "Consumer preferences for electric vehicles: a literature review," Transport Reviews, Taylor & Francis Journals, vol. 37(3), pages 252-275, May.
    15. Larson, Paul D. & Viáfara, Jairo & Parsons, Robert V. & Elias, Arne, 2014. "Consumer attitudes about electric cars: Pricing analysis and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 299-314.
    16. Noel, Lance & Sovacool, Benjamin K., 2016. "Why Did Better Place Fail?: Range anxiety, interpretive flexibility, and electric vehicle promotion in Denmark and Israel," Energy Policy, Elsevier, vol. 94(C), pages 377-386.
    17. Helveston, John Paul & Liu, Yimin & Feit, Elea McDonnell & Fuchs, Erica & Klampfl, Erica & Michalek, Jeremy J., 2015. "Will subsidies drive electric vehicle adoption? Measuring consumer preferences in the U.S. and China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 73(C), pages 96-112.
    18. Sundt, Swantje & Rehdanz, Katrin, 2015. "Consumers' willingness to pay for green electricity: A meta-analysis of the literature," Energy Economics, Elsevier, vol. 51(C), pages 1-8.
    19. Sovacool, Benjamin K. & Hirsh, Richard F., 2009. "Beyond batteries: An examination of the benefits and barriers to plug-in hybrid electric vehicles (PHEVs) and a vehicle-to-grid (V2G) transition," Energy Policy, Elsevier, vol. 37(3), pages 1095-1103, March.
    20. Noel, Lance & Zarazua de Rubens, Gerardo & Sovacool, Benjamin K., 2018. "Optimizing innovation, carbon and health in transport: Assessing socially optimal electric mobility and vehicle-to-grid pathways in Denmark," Energy, Elsevier, vol. 153(C), pages 628-637.
    21. Zhang, Li & Shaffer, Brendan & Brown, Tim & Scott Samuelsen, G., 2015. "The optimization of DC fast charging deployment in California," Applied Energy, Elsevier, vol. 157(C), pages 111-122.
    22. Bailey, Joseph & Axsen, Jonn, 2015. "Anticipating PEV buyers’ acceptance of utility controlled charging," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 29-46.
    23. Jerry A. Hausman, 1979. "Individual Discount Rates and the Purchase and Utilization of Energy-Using Durables," Bell Journal of Economics, The RAND Corporation, vol. 10(1), pages 33-54, Spring.
    24. Tanaka, Makoto & Ida, Takanori & Murakami, Kayo & Friedman, Lee, 2014. "Consumers’ willingness to pay for alternative fuel vehicles: A comparative discrete choice analysis between the US and Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 194-209.
    25. Soon, Jan-Jan & Ahmad, Siti-Aznor, 2015. "Willingly or grudgingly? A meta-analysis on the willingness-to-pay for renewable energy use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 877-887.
    26. Archsmith, James & Kendall, Alissa & Rapson, David, 2015. "From Cradle to Junkyard: Assessing the Life Cycle Greenhouse Gas Benefits of Electric Vehicles," Research in Transportation Economics, Elsevier, vol. 52(C), pages 72-90.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hackbarth, André & Madlener, Reinhard, 2016. "Willingness-to-pay for alternative fuel vehicle characteristics: A stated choice study for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 89-111.
    2. Kwon, Yeongmin & Son, Sanghoon & Jang, Kitae, 2018. "Evaluation of incentive policies for electric vehicles: An experimental study on Jeju Island," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 404-412.
    3. Gabriela D. Oliveira & Luis C. Dias, 2019. "Influence of Demographics on Consumer Preferences for Alternative Fuel Vehicles: A Review of Choice Modelling Studies and a Study in Portugal," Energies, MDPI, vol. 12(2), pages 1-33, January.
    4. Qian, Lixian & Grisolía, Jose M. & Soopramanien, Didier, 2019. "The impact of service and government-policy attributes on consumer preferences for electric vehicles in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 70-84.
    5. Ko, Sungmin & Shin, Jungwoo, 2023. "Projection of fuel cell electric vehicle demand reflecting the feedback effects between market conditions and market share affected by spatial factors," Energy Policy, Elsevier, vol. 173(C).
    6. Philip, Thara & Whitehead, Jake & Prato, Carlo G., 2023. "Adoption of electric vehicles in a laggard, car-dependent nation: Investigating the potential influence of V2G and broader energy benefits on adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 167(C).
    7. Soares, N. & Martins, A.G. & Carvalho, A.L. & Caldeira, C. & Du, C. & Castanheira, É. & Rodrigues, E. & Oliveira, G. & Pereira, G.I. & Bastos, J. & Ferreira, J.P. & Ribeiro, L.A. & Figueiredo, N.C. & , 2018. "The challenging paradigm of interrelated energy systems towards a more sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 171-193.
    8. Mandys, F., 2021. "Electric vehicles and consumer choices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    9. Mustafa Hamurcu & Tamer Eren, 2023. "Multicriteria decision making and goal programming for determination of electric automobile aimed at sustainable green environment: a case study," Environment Systems and Decisions, Springer, vol. 43(2), pages 211-231, June.
    10. Danielis, Romeo & Rotaris, Lucia & Giansoldati, Marco & Scorrano, Mariangela, 2020. "Drivers’ preferences for electric cars in Italy. Evidence from a country with limited but growing electric car uptake," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 79-94.
    11. Yan, Jianghui & Tseng, Fang-Mei & Lu, Louis Y.Y., 2018. "Developmental trajectories of new energy vehicle research in economic management: Main path analysis," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 168-181.
    12. Bera, Reema & Maitra, Bhargab, 2021. "Assessing consumer preferences for Plug-in Hybrid Electric Vehicle (PHEV): An Indian perspective," Research in Transportation Economics, Elsevier, vol. 90(C).
    13. Bansal, Prateek & Kumar, Rajeev Ranjan & Raj, Alok & Dubey, Subodh & Graham, Daniel J., 2021. "Willingness to pay and attitudinal preferences of Indian consumers for electric vehicles," Energy Economics, Elsevier, vol. 100(C).
    14. Huang, Youlin & Qian, Lixian & Tyfield, David & Soopramanien, Didier, 2021. "On the heterogeneity in consumer preferences for electric vehicles across generations and cities in China," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    15. Jia, Wenjian & Chen, T. Donna, 2023. "Investigating heterogeneous preferences for plug-in electric vehicles: Policy implications from different choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    16. Ma, Shao-Chao & Xu, Jin-Hua & Fan, Ying, 2019. "Willingness to pay and preferences for alternative incentives to EV purchase subsidies: An empirical study in China," Energy Economics, Elsevier, vol. 81(C), pages 197-215.
    17. Loría, Luis Enrique & Watson, Verity & Kiso, Takahiko & Phimister, Euan, 2019. "Investigating users' preferences for Low Emission Buses: Experiences from Europe's largest hydrogen bus fleet," Journal of choice modelling, Elsevier, vol. 32(C), pages 1-1.
    18. Bigerna, S. & Bollino, C.A. & Micheli, S. & Polinori, P., 2017. "Revealed and stated preferences for CO2 emissions reduction: The missing link," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1213-1221.
    19. Konstantinou, Theodora & Gkritza, Konstantina, 2023. "Are we getting close to truck electrification? U.S. truck fleet managers’ stated intentions to electrify their fleets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    20. Rosales-Tristancho, Abel & Carazo, Ana F. & Brey, Raúl, 2021. "A study of the willingness of Spanish drivers to pay a premium for ZEVs," Energy Policy, Elsevier, vol. 149(C).

    More about this item

    Keywords

    Electric vehicles; Electric mobility; Vehicle-to-grid; Willingness-to-pay; Choice experiment;
    All these keywords.

    JEL classification:

    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • R4 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics
    • R49 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:78:y:2019:i:c:p:525-534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.