IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v173y2023ics0301421522006048.html
   My bibliography  Save this article

Projection of fuel cell electric vehicle demand reflecting the feedback effects between market conditions and market share affected by spatial factors

Author

Listed:
  • Ko, Sungmin
  • Shin, Jungwoo

Abstract

The Korean government has planned policies to increase the penetration rate of fuel cell electric vehicles (FCEVs). Policy intervention has a positive effect on FCEV diffusion. Infrastructure distribution plays a significant role in accelerating penetration rate at the early stage of the market. Although inevitably differences exist in the accessibility of hydrogen refueling stations (HRSs) by region due to various constraints, few studies have considered accessibility in detail. This study analyzes how policies that vary depending on time and space, including infrastructure distribution, impact demand for FCEVs. A multistage structure is employed in the analysis to reflect the influence of spatial factors. Vehicle preference is analyzed through a discrete choice experiment at the first stage. The second stage solves the location problem and predicts the market share of FCEVs by reflecting the feedback effect between FCEVs’ market share and the accessibility of HRSs through a loop structure. The results indicate that improving access to HRSs positively affects the initial stage of the market; however, after accessibility reaches a certain level, it no longer affects the market share. The subsidies for hydrogen refueling costs bring a relatively rapid change to the gradually increasing penetration rate of FCEVs.

Suggested Citation

  • Ko, Sungmin & Shin, Jungwoo, 2023. "Projection of fuel cell electric vehicle demand reflecting the feedback effects between market conditions and market share affected by spatial factors," Energy Policy, Elsevier, vol. 173(C).
  • Handle: RePEc:eee:enepol:v:173:y:2023:i:c:s0301421522006048
    DOI: 10.1016/j.enpol.2022.113385
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421522006048
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2022.113385?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rosales-Tristancho, Abel & Brey, Raúl & Carazo, Ana F. & Brey, J. Javier, 2022. "Analysis of the barriers to the adoption of zero-emission vehicles in Spain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 19-43.
    2. Bateman, Ian J. & Day, Brett H. & Georgiou, Stavros & Lake, Iain, 2006. "The aggregation of environmental benefit values: Welfare measures, distance decay and total WTP," Ecological Economics, Elsevier, vol. 60(2), pages 450-460, December.
    3. Robert J. Johnston & Elena Y. Besedin & Benedict M. Holland, 2019. "Modeling Distance Decay Within Valuation Meta-Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(3), pages 657-690, March.
    4. Dimitropoulos, Alexandros & Rietveld, Piet & van Ommeren, Jos N., 2013. "Consumer valuation of changes in driving range: A meta-analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 55(C), pages 27-45.
    5. Kim, Imjung & Kim, Junghun & Lee, Jongsu, 2020. "Dynamic analysis of well-to-wheel electric and hydrogen vehicles greenhouse gas emissions: Focusing on consumer preferences and power mix changes in South Korea," Applied Energy, Elsevier, vol. 260(C).
    6. Hackbarth, André & Madlener, Reinhard, 2016. "Willingness-to-pay for alternative fuel vehicle characteristics: A stated choice study for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 89-111.
    7. Shin, Jungwoo & Hwang, Won-Sik & Choi, Hyundo, 2019. "Can hydrogen fuel vehicles be a sustainable alternative on vehicle market?: Comparison of electric and hydrogen fuel cell vehicles," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 239-248.
    8. Chorus, Caspar G. & Koetse, Mark J. & Hoen, Anco, 2013. "Consumer preferences for alternative fuel vehicles: Comparing a utility maximization and a regret minimization model," Energy Policy, Elsevier, vol. 61(C), pages 901-908.
    9. Ralf Havertz, 2021. "South Korea’s hydrogen economy program as a case of weak ecological modernization," Asia Europe Journal, Springer, vol. 19(2), pages 209-226, June.
    10. Robert J. Johnston & Elena Y. Besedin & Ryan Stapler, 2017. "Enhanced Geospatial Validity for Meta-analysis and Environmental Benefit Transfer: An Application to Water Quality Improvements," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(2), pages 343-375, October.
    11. Axsen, Jonn & Mountain, Dean C. & Jaccard, Mark, 2009. "Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles," Institute of Transportation Studies, Working Paper Series qt02n9j6cv, Institute of Transportation Studies, UC Davis.
    12. Trencher, Gregory & Taeihagh, Araz & Yarime, Masaru, 2020. "Overcoming barriers to developing and diffusing fuel-cell vehicles: Governance strategies and experiences in Japan," Energy Policy, Elsevier, vol. 142(C).
    13. Stephane Hess & Mark Fowler & Thomas Adler & Aniss Bahreinian, 2012. "A joint model for vehicle type and fuel type choice: evidence from a cross-nested logit study," Transportation, Springer, vol. 39(3), pages 593-625, May.
    14. Axsen, Jonn & Mountain, Dean C. & Jaccard, Mark, 2009. "Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles," Resource and Energy Economics, Elsevier, vol. 31(3), pages 221-238, August.
    15. Mikołaj Czajkowski & Wiktor Budziński & Danny Campbell & Marek Giergiczny & Nick Hanley, 2017. "Spatial Heterogeneity of Willingness to Pay for Forest Management," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(3), pages 705-727, November.
    16. Gnann, Till & Plötz, Patrick, 2015. "A review of combined models for market diffusion of alternative fuel vehicles and their refueling infrastructure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 783-793.
    17. Robert J. Johnston & Daniel Jarvis & Kristy Wallmo & Daniel K. Lew, 2015. "Multiscale Spatial Pattern in Nonuse Willingness to Pay: Applications to Threatened and Endangered Marine Species," Land Economics, University of Wisconsin Press, vol. 91(4), pages 739-761.
    18. Zhu, Zhi-Hong & Gao, Zi-You & Zheng, Jian-Feng & Du, Hao-Ming, 2016. "Charging station location problem of plug-in electric vehicles," Journal of Transport Geography, Elsevier, vol. 52(C), pages 11-22.
    19. Lim, Seow & Kuby, Michael, 2010. "Heuristic algorithms for siting alternative-fuel stations using the Flow-Refueling Location Model," European Journal of Operational Research, Elsevier, vol. 204(1), pages 51-61, July.
    20. Langbroek, Joram H.M. & Franklin, Joel P. & Susilo, Yusak O., 2016. "The effect of policy incentives on electric vehicle adoption," Energy Policy, Elsevier, vol. 94(C), pages 94-103.
    21. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, January.
    22. Campbell, Danny, 2007. "Combining mixed logit models and random effects models to identify the determinants of willingness to pay for rural landscape improvements," 81st Annual Conference, April 2-4, 2007, Reading University, UK 7975, Agricultural Economics Society.
    23. Hoen, Anco & Koetse, Mark J., 2014. "A choice experiment on alternative fuel vehicle preferences of private car owners in the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 199-215.
    24. Soyeong Park & Solji Nam & Myoungjin Oh & Ie-jung Choi & Jungwoo Shin, 2020. "Preference Structure on the Design of Hydrogen Refueling Stations to Activate Energy Transition," Energies, MDPI, vol. 13(15), pages 1-13, August.
    25. Kim, Jinhee & Rasouli, Soora & Timmermans, Harry, 2014. "Expanding scope of hybrid choice models allowing for mixture of social influences and latent attitudes: Application to intended purchase of electric cars," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 71-85.
    26. Byun, Hyunsuk & Shin, Jungwoo & Lee, Chul-Yong, 2018. "Using a discrete choice experiment to predict the penetration possibility of environmentally friendly vehicles," Energy, Elsevier, vol. 144(C), pages 312-321.
    27. Joonho Ko & Tae-Hyoung Tommy Gim & Randall Guensler, 2017. "Locating refuelling stations for alternative fuel vehicles: a review on models and applications," Transport Reviews, Taylor & Francis Journals, vol. 37(5), pages 551-570, September.
    28. Kuby, Michael & Lim, Seow, 2005. "The flow-refueling location problem for alternative-fuel vehicles," Socio-Economic Planning Sciences, Elsevier, vol. 39(2), pages 125-145, June.
    29. Axsen, Jonn & Orlebar, Caroline & Skippon, Stephen, 2013. "Social influence and consumer preference formation for pro-environmental technology: The case of a U.K. workplace electric-vehicle study," Ecological Economics, Elsevier, vol. 95(C), pages 96-107.
    30. Martin Zsifkovits & Markus Günther, 2015. "Simulating resistances in innovation diffusion over multiple generations: an agent-based approach for fuel-cell vehicles," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 23(2), pages 501-522, June.
    31. Choi, Hyunhong & Shin, Jungwoo & Woo, JongRoul, 2018. "Effect of electricity generation mix on battery electric vehicle adoption and its environmental impact," Energy Policy, Elsevier, vol. 121(C), pages 13-24.
    32. Helveston, John Paul & Liu, Yimin & Feit, Elea McDonnell & Fuchs, Erica & Klampfl, Erica & Michalek, Jeremy J., 2015. "Will subsidies drive electric vehicle adoption? Measuring consumer preferences in the U.S. and China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 73(C), pages 96-112.
    33. McFadden, Daniel, 1974. "The measurement of urban travel demand," Journal of Public Economics, Elsevier, vol. 3(4), pages 303-328, November.
    34. Sierzchula, William & Bakker, Sjoerd & Maat, Kees & van Wee, Bert, 2014. "The influence of financial incentives and other socio-economic factors on electric vehicle adoption," Energy Policy, Elsevier, vol. 68(C), pages 183-194.
    35. Michael Kuby & Seow Lim, 2007. "Location of Alternative-Fuel Stations Using the Flow-Refueling Location Model and Dispersion of Candidate Sites on Arcs," Networks and Spatial Economics, Springer, vol. 7(2), pages 129-152, June.
    36. Makena Coffman & Paul Bernstein & Sherilyn Wee, 2017. "Electric vehicles revisited: a review of factors that affect adoption," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 79-93, January.
    37. Danny Campbell, 2007. "Willingness to Pay for Rural Landscape Improvements: Combining Mixed Logit and Random‐Effects Models," Journal of Agricultural Economics, Wiley Blackwell, vol. 58(3), pages 467-483, September.
    38. Upchurch, Christopher & Kuby, Michael, 2010. "Comparing the p-median and flow-refueling models for locating alternative-fuel stations," Journal of Transport Geography, Elsevier, vol. 18(6), pages 750-758.
    39. Kim, Ju-Hee & Kim, Hyo-Jin & Yoo, Seung-Hoon, 2019. "Willingness to pay for fuel-cell electric vehicles in South Korea," Energy, Elsevier, vol. 174(C), pages 497-502.
    40. Kyuho Maeng & Sungmin Ko & Jungwoo Shin & Youngsang Cho, 2020. "How Much Electricity Sharing Will Electric Vehicle Owners Allow from Their Battery? Incorporating Vehicle-to-Grid Technology and Electricity Generation Mix," Energies, MDPI, vol. 13(16), pages 1-25, August.
    41. Tanaka, Makoto & Ida, Takanori & Murakami, Kayo & Friedman, Lee, 2014. "Consumers’ willingness to pay for alternative fuel vehicles: A comparative discrete choice analysis between the US and Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 194-209.
    42. S. L. Hakimi, 1964. "Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph," Operations Research, INFORMS, vol. 12(3), pages 450-459, June.
    43. Ziegler, Andreas, 2012. "Individual characteristics and stated preferences for alternative energy sources and propulsion technologies in vehicles: A discrete choice analysis for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1372-1385.
    44. Álvarez Fernández, Roberto & Corbera Caraballo, Sergio & Beltrán Cilleruelo, Fernando & Lozano, J. Antonio, 2018. "Fuel optimization strategy for hydrogen fuel cell range extender vehicles applying genetic algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 655-668.
    45. Yao, Richard T. & Scarpa, Riccardo & Turner, James A. & Barnard, Tim D. & Rose, John M. & Palma, João H.N. & Harrison, Duncan R., 2014. "Valuing biodiversity enhancement in New Zealand's planted forests: Socioeconomic and spatial determinants of willingness-to-pay," Ecological Economics, Elsevier, vol. 98(C), pages 90-101.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Doha & Song, Yeosol & Kim, Songyie & Lee, Sewang & Wu, Yanqin & Shin, Jungwoo & Lee, Daeho, 2023. "How should the results of artificial intelligence be explained to users? - Research on consumer preferences in user-centered explainable artificial intelligence," Technological Forecasting and Social Change, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia, Wenjian & Chen, T. Donna, 2023. "Investigating heterogeneous preferences for plug-in electric vehicles: Policy implications from different choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    2. Kim, Kyungah & Lee, Jongsu & Kim, Junghun, 2021. "Can liquefied petroleum gas vehicles join the fleet of alternative fuel vehicles? Implications of transportation policy based on market forecast and environmental impact," Energy Policy, Elsevier, vol. 154(C).
    3. Gabriela D. Oliveira & Luis C. Dias, 2019. "Influence of Demographics on Consumer Preferences for Alternative Fuel Vehicles: A Review of Choice Modelling Studies and a Study in Portugal," Energies, MDPI, vol. 12(2), pages 1-33, January.
    4. Bera, Reema & Maitra, Bhargab, 2021. "Assessing consumer preferences for Plug-in Hybrid Electric Vehicle (PHEV): An Indian perspective," Research in Transportation Economics, Elsevier, vol. 90(C).
    5. Kwon, Yeongmin & Son, Sanghoon & Jang, Kitae, 2018. "Evaluation of incentive policies for electric vehicles: An experimental study on Jeju Island," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 404-412.
    6. Loría, Luis Enrique & Watson, Verity & Kiso, Takahiko & Phimister, Euan, 2019. "Investigating users' preferences for Low Emission Buses: Experiences from Europe's largest hydrogen bus fleet," Journal of choice modelling, Elsevier, vol. 32(C), pages 1-1.
    7. Hackbarth, André & Madlener, Reinhard, 2016. "Willingness-to-pay for alternative fuel vehicle characteristics: A stated choice study for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 89-111.
    8. Bansal, Prateek & Kumar, Rajeev Ranjan & Raj, Alok & Dubey, Subodh & Graham, Daniel J., 2021. "Willingness to pay and attitudinal preferences of Indian consumers for electric vehicles," Energy Economics, Elsevier, vol. 100(C).
    9. Fanchao Liao & Eric Molin & Bert van Wee, 2017. "Consumer preferences for electric vehicles: a literature review," Transport Reviews, Taylor & Francis Journals, vol. 37(3), pages 252-275, May.
    10. Danielis, Romeo & Scorrano, Mariangela & Giansoldati, Marco & Rotaris, Lucia, 2019. "A meta-analysis of the importance of the driving range in consumers’ preference studies for battery electric vehicles," Working Papers 19_2, SIET Società Italiana di Economia dei Trasporti e della Logistica.
    11. Park, Soyeong & Maeng, Kyuho & Shin, Jungwoo, 2023. "Efficient subsidy distribution for hydrogen fuel cell vehicles based on demand segmentation," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    12. Bigerna, S. & Bollino, C.A. & Micheli, S. & Polinori, P., 2017. "Revealed and stated preferences for CO2 emissions reduction: The missing link," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1213-1221.
    13. Moon, HyungBin & Park, Stephen Youngjun & Woo, JongRoul, 2021. "Staying on convention or leapfrogging to eco-innovation?: Identifying early adopters of hydrogen-powered vehicles," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    14. Qian, Lixian & Grisolía, Jose M. & Soopramanien, Didier, 2019. "The impact of service and government-policy attributes on consumer preferences for electric vehicles in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 70-84.
    15. Noel, Lance & Papu Carrone, Andrea & Jensen, Anders Fjendbo & Zarazua de Rubens, Gerardo & Kester, Johannes & Sovacool, Benjamin K., 2019. "Willingness to pay for electric vehicles and vehicle-to-grid applications: A Nordic choice experiment," Energy Economics, Elsevier, vol. 78(C), pages 525-534.
    16. Philip, Thara & Whitehead, Jake & Prato, Carlo G., 2023. "Adoption of electric vehicles in a laggard, car-dependent nation: Investigating the potential influence of V2G and broader energy benefits on adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 167(C).
    17. Zulfiqar Ali Lashari & Joonho Ko & Seunghyun Jung & Sungtaek Choi, 2022. "Choices of Potential Car Buyers Regarding Alternative Fuel Vehicles in South Korea: A Discrete Choice Modeling Approach," Sustainability, MDPI, vol. 14(9), pages 1-17, April.
    18. Soares, N. & Martins, A.G. & Carvalho, A.L. & Caldeira, C. & Du, C. & Castanheira, É. & Rodrigues, E. & Oliveira, G. & Pereira, G.I. & Bastos, J. & Ferreira, J.P. & Ribeiro, L.A. & Figueiredo, N.C. & , 2018. "The challenging paradigm of interrelated energy systems towards a more sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 171-193.
    19. Ma, Shao-Chao & Xu, Jin-Hua & Fan, Ying, 2019. "Willingness to pay and preferences for alternative incentives to EV purchase subsidies: An empirical study in China," Energy Economics, Elsevier, vol. 81(C), pages 197-215.
    20. Yang, J. & Chen, F., 2021. "How are social-psychological factors related to consumer preferences for plug-in electric vehicles? Case studies from two cities in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:173:y:2023:i:c:s0301421522006048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.