IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v68y2017ip2p1213-1221.html
   My bibliography  Save this article

Revealed and stated preferences for CO2 emissions reduction: The missing link

Author

Listed:
  • Bigerna, S.
  • Bollino, C.A.
  • Micheli, S.
  • Polinori, P.

Abstract

In this paper we combine data collected from two strands of literature dealing with revealed preferences expressed by conventional vehicle drivers for fuel price variation and stated preferences expressed by consumers for alternative fuel vehicles. We employ a meta-analysis approach drawing data on 30 primary studies, reflecting two important policy interventions, which are fuel price taxation and subsidies for alternative fuel vehicles. This is a new contribution in environmental and energy economics in that we rescale all primary information into a unique index, which captures consumers’ economic attitude towards carbon dioxide (CO2) emission reduction in monetary terms. Focusing on the transport sector, we compute the implicit price for the avoidance of a kilogram of CO2 emissions, named PCO2, explaining the existing heterogeneity from several points of view. The results of the meta-analysis show that contextual and individual characteristics influence the implicit price for CO2 emissions avoidance. This implicit price is on average positive in the case of revealed preferences studies, whereas it is negative in the stated preferences studies. Although there are some important geographical differences, our results show that fuel taxes could be an important additional instrument for environmental policy.

Suggested Citation

  • Bigerna, S. & Bollino, C.A. & Micheli, S. & Polinori, P., 2017. "Revealed and stated preferences for CO2 emissions reduction: The missing link," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1213-1221.
  • Handle: RePEc:eee:rensus:v:68:y:2017:i:p2:p:1213-1221
    DOI: 10.1016/j.rser.2016.02.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116002288
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hidrue, Michael K. & Parsons, George R. & Kempton, Willett & Gardner, Meryl P., 2011. "Willingness to pay for electric vehicles and their attributes," Resource and Energy Economics, Elsevier, vol. 33(3), pages 686-705, September.
    2. M. Bockarjova & P. Rietveld & J.S.A. Knockaert, 2013. "Adoption of Electric Vehicle in the Netherlands – A Stated Choice Experiment," Tinbergen Institute Discussion Papers 13-100/VIII, Tinbergen Institute, revised 01 Aug 2013.
    3. Sterner, Thomas, 2007. "Fuel taxes: An important instrument for climate policy," Energy Policy, Elsevier, vol. 35(6), pages 3194-3202, June.
    4. Kyoung-Min Lim & Myunghwan Kim & Chang Seob Kim & Seung-Hoon Yoo, 2012. "Short-Run and Long-Run Elasticities of Diesel Demand in Korea," Energies, MDPI, Open Access Journal, vol. 5(12), pages 1-10, November.
    5. Meyer, I. & Leimbach, M. & Jaeger, C.C., 2007. "International passenger transport and climate change: A sector analysis in car demand and associated CO2 emissions from 2000 to 2050," Energy Policy, Elsevier, vol. 35(12), pages 6332-6345, December.
    6. James Murphy & P. Allen & Thomas Stevens & Darryl Weatherhead, 2005. "A Meta-analysis of Hypothetical Bias in Stated Preference Valuation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 30(3), pages 313-325, March.
    7. Dimitropoulos, Alexandros & Rietveld, Piet & van Ommeren, Jos N., 2013. "Consumer valuation of changes in driving range: A meta-analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 55(C), pages 27-45.
    8. Barla, Philippe & Gilbert-Gonthier, Mathieu & Kuelah, Jean-René Tagne, 2014. "The demand for road diesel in Canada," Energy Economics, Elsevier, vol. 43(C), pages 316-322.
    9. Dahl, Carol A, 1979. "Consumer Adjustment to a Gasoline Tax," The Review of Economics and Statistics, MIT Press, vol. 61(3), pages 427-432, August.
    10. Lin, C.-Y. Cynthia & Prince, Lea, 2013. "Gasoline price volatility and the elasticity of demand for gasoline," Energy Economics, Elsevier, vol. 38(C), pages 111-117.
    11. Liu, Yizao, 2014. "Household demand and willingness to pay for hybrid vehicles," Energy Economics, Elsevier, vol. 44(C), pages 191-197.
    12. Helveston, John Paul & Liu, Yimin & Feit, Elea McDonnell & Fuchs, Erica & Klampfl, Erica & Michalek, Jeremy J., 2015. "Will subsidies drive electric vehicle adoption? Measuring consumer preferences in the U.S. and China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 73(C), pages 96-112.
    13. Harajli, Hassan & Gordon, Fabiana, 2015. "Willingness to pay for green power in an unreliable electricity sector: Part 2. The case of the Lebanese commercial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1643-1649.
    14. Bigerna, Simona & Polinori, Paolo, 2014. "Italian households׳ willingness to pay for green electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 110-121.
    15. Zhang, Huiming & Li, Lianshui & Cao, Jie & Zhao, Mengnan & Wu, Qing, 2011. "Comparison of renewable energy policy evolution among the BRICs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4904-4909.
    16. Martin Achtnicht, 2012. "German car buyers’ willingness to pay to reduce CO 2 emissions," Climatic Change, Springer, vol. 113(3), pages 679-697, August.
    17. Broadstock, David C. & Hunt, Lester C., 2010. "Quantifying the impact of exogenous non-economic factors on UK transport oil demand," Energy Policy, Elsevier, vol. 38(3), pages 1559-1565, March.
    18. Caussade, Sebastián & Ortúzar, Juan de Dios & Rizzi, Luis I. & Hensher, David A., 2005. "Assessing the influence of design dimensions on stated choice experiment estimates," Transportation Research Part B: Methodological, Elsevier, vol. 39(7), pages 621-640, August.
    19. Polemis, Michael L., 2006. "Empirical assessment of the determinants of road energy demand in Greece," Energy Economics, Elsevier, vol. 28(3), pages 385-403, May.
    20. Dagsvik, John K. & Wennemo, Tom & Wetterwald, Dag G. & Aaberge, Rolf, 2002. "Potential demand for alternative fuel vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 36(4), pages 361-384, May.
    21. Axsen, Jonn & Mountain, Dean C. & Jaccard, Mark, 2009. "Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles," Institute of Transportation Studies, Working Paper Series qt02n9j6cv, Institute of Transportation Studies, UC Davis.
    22. Brownstone, David & Bunch, David S. & Train, Kenneth, 2000. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 315-338, June.
    23. Brons, Martijn & Nijkamp, Peter & Pels, Eric & Rietveld, Piet, 2008. "A meta-analysis of the price elasticity of gasoline demand. A SUR approach," Energy Economics, Elsevier, vol. 30(5), pages 2105-2122, September.
    24. John C. Whitehead & Douglas Simpson Noonan & Elizabeth Marquardt, 2014. "Criterion and predictive validity of revealed and stated preference data: the case of “Mountain Home Music†concert demand," Economics and Business Letters, Oviedo University Press, vol. 3(2), pages 87-95.
    25. Brand, Christian & Anable, Jillian & Tran, Martino, 2013. "Accelerating the transformation to a low carbon passenger transport system: The role of car purchase taxes, feebates, road taxes and scrappage incentives in the UK," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 132-148.
    26. Kim, Young-Duk & Han, Hyun-Ok & Moon, Young-Seok, 2011. "The empirical effects of a gasoline tax on CO2 emissions reductions from transportation sector in Korea," Energy Policy, Elsevier, vol. 39(2), pages 981-989, February.
    27. Crôtte, Amado & Noland, Robert B. & Graham, Daniel J., 2010. "An analysis of gasoline demand elasticities at the national and local levels in Mexico," Energy Policy, Elsevier, vol. 38(8), pages 4445-4456, August.
    28. Koetse, Mark J. & Hoen, Anco, 2014. "Preferences for alternative fuel vehicles of company car drivers," Resource and Energy Economics, Elsevier, vol. 37(C), pages 279-301.
    29. Adamowicz W. & Louviere J. & Williams M., 1994. "Combining Revealed and Stated Preference Methods for Valuing Environmental Amenities," Journal of Environmental Economics and Management, Elsevier, vol. 26(3), pages 271-292, May.
    30. Dongfeng Chang & Apostolos Serletis, 2014. "The Demand For Gasoline: Evidence From Household Survey Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(2), pages 291-313, March.
    31. Coyle, David & DeBacker, Jason & Prisinzano, Richard, 2012. "Estimating the supply and demand of gasoline using tax data," Energy Economics, Elsevier, vol. 34(1), pages 195-200.
    32. Akinboade, Oludele A. & Ziramba, Emmanuel & Kumo, Wolassa L., 2008. "The demand for gasoline in South Africa: An empirical analysis using co-integration techniques," Energy Economics, Elsevier, vol. 30(6), pages 3222-3229, November.
    33. Axsen, Jonn & Mountain, Dean C. & Jaccard, Mark, 2009. "Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles," Resource and Energy Economics, Elsevier, vol. 31(3), pages 221-238, August.
    34. Ramanathan, R., 1999. "Short- and long-run elasticities of gasoline demand in India: An empirical analysis using cointegration techniques," Energy Economics, Elsevier, vol. 21(4), pages 321-330, August.
    35. Melo, Patricia C. & Ramli, Ahmad Razi, 2014. "Estimating fuel demand elasticities to evaluate CO2 emissions: Panel data evidence for the Lisbon Metropolitan Area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 30-46.
    36. Nicol, C. J., 2003. "Elasticities of demand for gasoline in Canada and the United States," Energy Economics, Elsevier, vol. 25(2), pages 201-214, March.
    37. V. Smith & Subhrendu Pattanayak, 2002. "Is Meta-Analysis a Noah's Ark for Non-Market Valuation?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 22(1), pages 271-296, June.
    38. Dahl, Carol A., 2012. "Measuring global gasoline and diesel price and income elasticities," Energy Policy, Elsevier, vol. 41(C), pages 2-13.
    39. Alexandros Dimitropoulos, 2014. "The Influence of Environmental Concerns on Drivers’ Preferences for Electric Cars," Tinbergen Institute Discussion Papers 14-128/VIII, Tinbergen Institute.
    40. Baranzini, Andrea & Weber, Sylvain, 2013. "Elasticities of gasoline demand in Switzerland," Energy Policy, Elsevier, vol. 63(C), pages 674-680.
    41. Hoen, Anco & Koetse, Mark J., 2014. "A choice experiment on alternative fuel vehicle preferences of private car owners in the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 199-215.
    42. Mohamad Taghvaee, Vahid & Hajiani, Parviz, 2014. "Price and Income Elasticities of Gasoline Demand in Iran: Using Static, ECM, and Dynamic Models in Short, Intermediate, and Long Run," MPRA Paper 70054, University Library of Munich, Germany.
    43. John List & Craig Gallet, 2001. "What Experimental Protocol Influence Disparities Between Actual and Hypothetical Stated Values?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 20(3), pages 241-254, November.
    44. Maria L. Loureiro & Jill J. McCluskey & Ron C. Mittelhammer, 2003. "Are Stated Preferences Good Predictors of Market Behavior?," Land Economics, University of Wisconsin Press, vol. 79(1), pages 44-45.
    45. Sipes, Kristin N. & Mendelsohn, Robert, 2001. "The effectiveness of gasoline taxation to manage air pollution," Ecological Economics, Elsevier, vol. 36(2), pages 299-309, February.
    46. Jon Nelson & Peter Kennedy, 2009. "The Use (and Abuse) of Meta-Analysis in Environmental and Natural Resource Economics: An Assessment," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 42(3), pages 345-377, March.
    47. Carlo Andrea Bollino, 2009. "The Willingness to Pay for Renewable Energy Sources: The Case of Italy with Socio-demographic Determinants," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 81-96.
    48. Tanaka, Makoto & Ida, Takanori & Murakami, Kayo & Friedman, Lee, 2014. "Consumers’ willingness to pay for alternative fuel vehicles: A comparative discrete choice analysis between the US and Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 194-209.
    49. Dagher, Leila & Harajli, Hassan, 2015. "Willingness to pay for green power in an unreliable electricity sector: Part 1. The case of the Lebanese residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1634-1642.
    50. Yong, Jia Ying & Ramachandaramurthy, Vigna K. & Tan, Kang Miao & Mithulananthan, N., 2015. "A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 365-385.
    51. Ahn, Jiwoon & Jeong, Gicheol & Kim, Yeonbae, 2008. "A forecast of household ownership and use of alternative fuel vehicles: A multiple discrete-continuous choice approach," Energy Economics, Elsevier, vol. 30(5), pages 2091-2104, September.
    52. Ziegler, Andreas, 2012. "Individual characteristics and stated preferences for alternative energy sources and propulsion technologies in vehicles: A discrete choice analysis for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1372-1385.
    53. Alves, Denisard C. O. & De Losso da Silveira Bueno, Rodrigo, 2003. "Short-run, long-run and cross elasticities of gasoline demand in Brazil," Energy Economics, Elsevier, vol. 25(2), pages 191-199, March.
    54. Van Houtven, George & Powers, John & Pattanayak, Subhrendu K., 2007. "Valuing water quality improvements in the United States using meta-analysis: Is the glass half-full or half-empty for national policy analysis?," Resource and Energy Economics, Elsevier, vol. 29(3), pages 206-228, September.
    55. Iwayemi, Akin & Adenikinju, Adeola & Babatunde, M. Adetunji, 2010. "Estimating petroleum products demand elasticities in Nigeria: A multivariate cointegration approach," Energy Economics, Elsevier, vol. 32(1), pages 73-85, January.
    56. John Loomis, 2011. "What'S To Know About Hypothetical Bias In Stated Preference Valuation Studies?," Journal of Economic Surveys, Wiley Blackwell, vol. 25(2), pages 363-370, April.
    57. Pock, Markus, 2010. "Gasoline demand in Europe: New insights," Energy Economics, Elsevier, vol. 32(1), pages 54-62, January.
    58. Lin, C.-Y. Cynthia & Zeng, Jieyin (Jean), 2013. "The elasticity of demand for gasoline in China," Energy Policy, Elsevier, vol. 59(C), pages 189-197.
    59. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
    60. Axsen, Jonn & Orlebar, Caroline & Skippon, Stephen, 2013. "Social influence and consumer preference formation for pro-environmental technology: The case of a U.K. workplace electric-vehicle study," Ecological Economics, Elsevier, vol. 95(C), pages 96-107.
    61. Ben Sita, Bernard & Marrouch, Walid & Abosedra, Salah, 2012. "Short-run price and income elasticity of gasoline demand: Evidence from Lebanon," Energy Policy, Elsevier, vol. 46(C), pages 109-115.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:regeco:v:68:y:2018:i:c:p:23-35 is not listed on IDEAS
    2. repec:oup:ijlctc:v:13:y:2018:i:2:p:131-139. is not listed on IDEAS
    3. repec:eee:transa:v:110:y:2018:i:c:p:57-72 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:68:y:2017:i:p2:p:1213-1221. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.