IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i14p7725-d592113.html
   My bibliography  Save this article

Analyzing Prospective Owners’ Choice Decision towards Plug-in Hybrid Electric Vehicles in Urban India: A Stated Preference Discrete Choice Experiment

Author

Listed:
  • Reema Bera

    (Civil Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India)

  • Bhargab Maitra

    (Civil Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India)

Abstract

Plug-in Hybrid Electric Vehicles (PHEVs) can help decarbonize road transport in urban India. To accelerate the diffusion of PHEVs, investigation of commuter preferences towards the attributes of PHEVs is necessary. Therefore, the present study analyzes prospective owners’ choice decisions towards PHEVs in a typical Indian context. A stated preference survey was designed to collect responses from the current owners of conventional vehicles (CVs) in Delhi, India, and Mixed Logit (ML) models were developed to estimate commuters’ Willingness To Pay (WTP) for a set of key PHEV-specific attributes. The decomposition effect of prospective owners’ sociodemographic characteristics and trip characteristics on the mean estimates of random parameters was investigated by developing ML models with heterogeneity. Subsequently, the influence of improvement of each PHEV-specific attribute on prospective owners’ choice probability was investigated by calculating marginal effects. Among the various PHEV-specific attributes considered in the present study, high WTPs are observed for decrease in battery recharging time, reduction in tailpipe emission and increase in electric range. Therefore, an added emphasis on these attributes by vehicle manufacturers is likely to enhance the attractiveness of PHEVs to Indian commuters. The results also highlight the importance of government subsidy for promoting PHEVs in the Indian market. Prospective owners’ income, availability of home-based parking space, and average daily trip length are found to significantly influence the choice decision of Indian commuters towards PHEVs.

Suggested Citation

  • Reema Bera & Bhargab Maitra, 2021. "Analyzing Prospective Owners’ Choice Decision towards Plug-in Hybrid Electric Vehicles in Urban India: A Stated Preference Discrete Choice Experiment," Sustainability, MDPI, Open Access Journal, vol. 13(14), pages 1-24, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:7725-:d:592113
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/14/7725/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/14/7725/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hidrue, Michael K. & Parsons, George R. & Kempton, Willett & Gardner, Meryl P., 2011. "Willingness to pay for electric vehicles and their attributes," Resource and Energy Economics, Elsevier, vol. 33(3), pages 686-705, September.
    2. Egbue, Ona & Long, Suzanna, 2012. "Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions," Energy Policy, Elsevier, vol. 48(C), pages 717-729.
    3. Yongyou Nie & Enci Wang & Qinxin Guo & Junyi Shen, 2018. "Examining Shanghai Consumer Preferences for Electric Vehicles and Their Attributes," Sustainability, MDPI, Open Access Journal, vol. 10(6), pages 1-16, June.
    4. Huang, Youlin & Qian, Lixian & Tyfield, David & Soopramanien, Didier, 2021. "On the heterogeneity in consumer preferences for electric vehicles across generations and cities in China," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    5. Hausman, Jerry & McFadden, Daniel, 1984. "Specification Tests for the Multinomial Logit Model," Econometrica, Econometric Society, vol. 52(5), pages 1219-1240, September.
    6. Danielis, Romeo & Rotaris, Lucia & Giansoldati, Marco & Scorrano, Mariangela, 2020. "Drivers’ preferences for electric cars in Italy. Evidence from a country with limited but growing electric car uptake," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 79-94.
    7. Rose, John M. & Bliemer, Michiel C.J. & Hensher, David A. & Collins, Andrew T., 2008. "Designing efficient stated choice experiments in the presence of reference alternatives," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 395-406, May.
    8. Martin Achtnicht, 2012. "German car buyers’ willingness to pay to reduce CO 2 emissions," Climatic Change, Springer, vol. 113(3), pages 679-697, August.
    9. Elena Higueras-Castillo & Sebastian Molinillo & J. Andres Coca-Stefaniak & Francisco Liébana-Cabanillas, 2020. "Potential Early Adopters of Hybrid and Electric Vehicles in Spain—Towards a Customer Profile," Sustainability, MDPI, Open Access Journal, vol. 12(11), pages 1-18, May.
    10. Hensher,David A. & Rose,John M. & Greene,William H., 2015. "Applied Choice Analysis," Cambridge Books, Cambridge University Press, number 9781107465923, February.
    11. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    12. Fabio Carlucci & Andrea Cirà & Giuseppe Lanza, 2018. "Hybrid Electric Vehicles: Some Theoretical Considerations on Consumption Behaviour," Sustainability, MDPI, Open Access Journal, vol. 10(4), pages 1-11, April.
    13. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, February.
    14. Sarmad Zaman Rajper & Johan Albrecht, 2020. "Prospects of Electric Vehicles in the Developing Countries: A Literature Review," Sustainability, MDPI, Open Access Journal, vol. 12(5), pages 1-19, March.
    15. Bhat, Chandra R., 2001. "Quasi-random maximum simulated likelihood estimation of the mixed multinomial logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 677-693, August.
    16. Daniel McFadden, 1986. "The Choice Theory Approach to Market Research," Marketing Science, INFORMS, vol. 5(4), pages 275-297.
    17. Wang, Qiang & Li, Rongrong, 2016. "Drivers for energy consumption: A comparative analysis of China and India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 954-962.
    18. Tanaka, Makoto & Ida, Takanori & Murakami, Kayo & Friedman, Lee, 2014. "Consumers’ willingness to pay for alternative fuel vehicles: A comparative discrete choice analysis between the US and Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 194-209.
    19. Axsen, Jonn & Kurani, Kenneth S, 2010. "Anticipating plug-in hybrid vehicle energy impacts in California: Constructing consumer-informed recharge profiles," Institute of Transportation Studies, Working Paper Series qt3h69n0cs, Institute of Transportation Studies, UC Davis.
    20. Plötz, Patrick & Funke, Simon Árpád & Jochem, Patrick, 2018. "The impact of daily and annual driving on fuel economy and CO2 emissions of plug-in hybrid electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 331-340.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    2. Daan Hulshof & Machiel Mulder, 2020. "Willingness to Pay for $$\hbox {CO}_2$$CO2 Emission Reductions in Passenger Car Transport," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(4), pages 899-929, April.
    3. Qian, Lixian & Grisolía, Jose M. & Soopramanien, Didier, 2019. "The impact of service and government-policy attributes on consumer preferences for electric vehicles in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 70-84.
    4. Noel, Lance & Papu Carrone, Andrea & Jensen, Anders Fjendbo & Zarazua de Rubens, Gerardo & Kester, Johannes & Sovacool, Benjamin K., 2019. "Willingness to pay for electric vehicles and vehicle-to-grid applications: A Nordic choice experiment," Energy Economics, Elsevier, vol. 78(C), pages 525-534.
    5. Hackbarth, André & Madlener, Reinhard, 2016. "Willingness-to-pay for alternative fuel vehicle characteristics: A stated choice study for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 89-111.
    6. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
    7. Ye Yang & Zhongfu Tan, 2019. "Investigating the Influence of Consumer Behavior and Governmental Policy on the Diffusion of Electric Vehicles in Beijing, China," Sustainability, MDPI, Open Access Journal, vol. 11(24), pages 1-20, December.
    8. Carsten Herbes & Johannes Dahlin & Peter Kurz, 2020. "Consumer Willingness To Pay for Proenvironmental Attributes of Biogas Digestate-Based Potting Soil," Sustainability, MDPI, Open Access Journal, vol. 12(16), pages 1-19, August.
    9. Bliemer, Michiel C.J. & Rose, John M., 2010. "Construction of experimental designs for mixed logit models allowing for correlation across choice observations," Transportation Research Part B: Methodological, Elsevier, vol. 44(6), pages 720-734, July.
    10. Junyi Shen & Yusuke Sakata & Yoshizo Hashimoto, 2006. "A Comparison between Latent Class Model and Mixed Logit Model for Transport Mode Choice: Evidences from Two Datasets of Japan," Discussion Papers in Economics and Business 06-05, Osaka University, Graduate School of Economics.
    11. Rahmani, Djamel & Loureiro, Maria L., 2019. "Assessing drivers’ preferences for hybrid electric vehicles (HEV) in Spain," Research in Transportation Economics, Elsevier, vol. 73(C), pages 89-97.
    12. Fanchao Liao & Eric Molin & Bert van Wee, 2017. "Consumer preferences for electric vehicles: a literature review," Transport Reviews, Taylor & Francis Journals, vol. 37(3), pages 252-275, May.
    13. Mallikarjun Patil & Bandhan Bandhu Majumdar & Prasanta Kumar Sahu & Long T. Truong, 2021. "Evaluation of Prospective Users’ Choice Decision toward Electric Two-Wheelers Using a Stated Preference Survey: An Indian Perspective," Sustainability, MDPI, Open Access Journal, vol. 13(6), pages 1-22, March.
    14. Kalkbrenner, Bernhard J., 2019. "Residential vs. community battery storage systems – Consumer preferences in Germany," Energy Policy, Elsevier, vol. 129(C), pages 1355-1363.
    15. Helen Scarborough & Jeff Bennett, 2012. "Cost–Benefit Analysis and Distributional Preferences," Books, Edward Elgar Publishing, number 14376.
    16. Charu Grover & Sangeeta Bansal & Adan L. Martinez-Cruz, "undated". "Influence of Social Network Effect and Incentive on Choice of Star Labeled Cars in India: A Latent Class Approach based on Choice Experiment," Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi Discussion Papers 18-05, Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi, India.
    17. Loría, Luis Enrique & Watson, Verity & Kiso, Takahiko & Phimister, Euan, 2019. "Investigating users' preferences for Low Emission Buses: Experiences from Europe's largest hydrogen bus fleet," Journal of choice modelling, Elsevier, vol. 32(C), pages 1-1.
    18. Rid, Wolfgang & Haider, Wolfgang & Ryffel, Andrea & Beardmore, Ben, 2018. "Visualisations in Choice Experiments: Comparing 3D Film-sequences and Still-images to Analyse Housing Development Alternatives," Ecological Economics, Elsevier, vol. 146(C), pages 203-217.
    19. Kim, Kyungah & Lee, Jongsu & Kim, Junghun, 2021. "Can liquefied petroleum gas vehicles join the fleet of alternative fuel vehicles? Implications of transportation policy based on market forecast and environmental impact," Energy Policy, Elsevier, vol. 154(C).
    20. Yujin Beak & Kayoung Kim & Kyuho Maeng & Youngsang Cho, 2020. "Is the environment‐friendly factor attractive to customers when purchasing electric vehicles? Evidence from South Korea," Business Strategy and the Environment, Wiley Blackwell, vol. 29(3), pages 996-1006, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:7725-:d:592113. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://www.mdpi.com/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: XML Conversion Team (email available below). General contact details of provider: https://www.mdpi.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.