IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipcs0360544221022970.html
   My bibliography  Save this article

Core process representation in power system operational models: Gaps, challenges, and opportunities for multisector dynamics research

Author

Listed:
  • Oikonomou, Konstantinos
  • Tarroja, Brian
  • Kern, Jordan
  • Voisin, Nathalie

Abstract

Power grid operations increasingly interact with environmental systems and human systems such as transportation, agriculture, the economy, and financial markets. Our objective is to discuss the modelling gaps and opportunities to advance the science for multisector adaptation and tradeoffs. We focus on power system operational models, which typically represent key physical and economic aspects of grid operations over days to a year and assume a fixed power grid infrastructure. Due to computational burden, models are typically customized to reflect regional resource opportunities, data availability, and applications of interest. We conceptualize power system operational models with four core processes: physical grid assets (generation, transmission, loads, and storage), model objectives and purpose, institutions and decision agents, and performance metrics. We taxonomize the representations of these core processes based on a review of 23 existing models. Using science questions around grid and short term uncertainties, long term global change, and multisectoral technological innovation as examples, we report on tradeoffs in process fidelity and tractability that have been adopted by the research community to represent multisectoral interactions in power system operational models. Our recommendations for research directions are model-agnostic, focusing on core processes, their interactions with other human systems, and consider computational tradeoffs.

Suggested Citation

  • Oikonomou, Konstantinos & Tarroja, Brian & Kern, Jordan & Voisin, Nathalie, 2022. "Core process representation in power system operational models: Gaps, challenges, and opportunities for multisector dynamics research," Energy, Elsevier, vol. 238(PC).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221022970
    DOI: 10.1016/j.energy.2021.122049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221022970
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Behrens & Michelle T. H. van Vliet & Tijmen Nanninga & Brid Walsh & João F. D. Rodrigues, 2017. "Climate change and the vulnerability of electricity generation to water stress in the European Union," Nature Energy, Nature, vol. 2(8), pages 1-7, August.
    2. Vignesh Sridharan & Oliver Broad & Abhishek Shivakumar & Mark Howells & Brent Boehlert & David G. Groves & H-Holger Rogner & Constantinos Taliotis & James E. Neumann & Kenneth M. Strzepek & Robert Lem, 2019. "Resilience of the Eastern African electricity sector to climate driven changes in hydropower generation," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    3. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    4. Ariel Miara & Jordan E. Macknick & Charles J. Vörösmarty & Vincent C. Tidwell & Robin Newmark & Balazs Fekete, 2017. "Climate and water resource change impacts and adaptation potential for US power supply," Nature Climate Change, Nature, vol. 7(11), pages 793-798, November.
    5. Simon Parkinson & Ned Djilali, 2015. "Robust response to hydro-climatic change in electricity generation planning," Climatic Change, Springer, vol. 130(4), pages 475-489, June.
    6. Shield, Stephen A. & Quiring, Steven M. & Pino, Jordan V. & Buckstaff, Ken, 2021. "Major impacts of weather events on the electrical power delivery system in the United States," Energy, Elsevier, vol. 218(C).
    7. Gacitua, L. & Gallegos, P. & Henriquez-Auba, R. & Lorca, Á. & Negrete-Pincetic, M. & Olivares, D. & Valenzuela, A. & Wenzel, G., 2018. "A comprehensive review on expansion planning: Models and tools for energy policy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 346-360.
    8. Bas J. van Ruijven & Enrica De Cian & Ian Sue Wing, 2019. "Amplification of future energy demand growth due to climate change," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    9. Su, Yufei & Kern, Jordan D. & Reed, Patrick M. & Characklis, Gregory W., 2020. "Compound hydrometeorological extremes across multiple timescales drive volatility in California electricity market prices and emissions," Applied Energy, Elsevier, vol. 276(C).
    10. Staffell, Iain & Pfenninger, Stefan, 2018. "The increasing impact of weather on electricity supply and demand," Energy, Elsevier, vol. 145(C), pages 65-78.
    11. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    12. Christopher M. Chini & Lucas A. Djehdian & William N. Lubega & Ashlynn S. Stillwell, 2018. "Virtual water transfers of the US electric grid," Nature Energy, Nature, vol. 3(12), pages 1115-1123, December.
    13. Daniel C. Steinberg & Bryan K. Mignone & Jordan Macknick & Yinong Sun & Kelly Eurek & Andrew Badger & Ben Livneh & Kristen Averyt, 2020. "Decomposing supply-side and demand-side impacts of climate change on the US electricity system through 2050," Climatic Change, Springer, vol. 158(2), pages 125-139, January.
    14. Tarroja, Brian & Forrest, Kate & Chiang, Felicia & AghaKouchak, Amir & Samuelsen, Scott, 2019. "Implications of hydropower variability from climate change for a future, highly-renewable electric grid in California," Applied Energy, Elsevier, vol. 237(C), pages 353-366.
    15. Daniel C. Steinberg & Bryan K. Mignone & Jordan Macknick & Yinong Sun & Kelly Eurek & Andrew Badger & Ben Livneh & Kristen Averyt, 2020. "Correction to: Decomposing supply-side and demand-side impacts of climate change on the US electricity system through 2050," Climatic Change, Springer, vol. 163(2), pages 1107-1108, November.
    16. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    17. Burillo, Daniel & Chester, Mikhail V. & Ruddell, Benjamin & Johnson, Nathan, 2017. "Electricity demand planning forecasts should consider climate non-stationarity to maintain reserve margins during heat waves," Applied Energy, Elsevier, vol. 206(C), pages 267-277.
    18. Dominique M. Bain & Thomas L. Acker, 2018. "Hydropower Impacts on Electrical System Production Costs in the Southwest United States," Energies, MDPI, vol. 11(2), pages 1-21, February.
    19. Shariatzadeh, Farshid & Mandal, Paras & Srivastava, Anurag K., 2015. "Demand response for sustainable energy systems: A review, application and implementation strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 343-350.
    20. João Abel Peças Lopes & André Guimarães Madureira & Manuel Matos & Ricardo Jorge Bessa & Vítor Monteiro & João Luiz Afonso & Sérgio F. Santos & João P. S. Catalão & Carlos Henggeler Antunes & Pedro Ma, 2020. "The future of power systems: Challenges, trends, and upcoming paradigms," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(3), May.
    21. Ran, Cuiling & Zhang, Yanzi & Yin, Ying, 2021. "Demand response to improve the shared electric vehicle planning: Managerial insights, sustainable benefits," Applied Energy, Elsevier, vol. 292(C).
    22. Mwasilu, Francis & Justo, Jackson John & Kim, Eun-Kyung & Do, Ton Duc & Jung, Jin-Woo, 2014. "Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 501-516.
    23. Boogert, Alexander & Dupont, Dominique, 2005. "On the effectiveness of the anti-gaming policy between the day-ahead and real-time electricity markets in The Netherlands," Energy Economics, Elsevier, vol. 27(5), pages 752-770, September.
    24. Michelle T. H. van Vliet & David Wiberg & Sylvain Leduc & Keywan Riahi, 2016. "Power-generation system vulnerability and adaptation to changes in climate and water resources," Nature Climate Change, Nature, vol. 6(4), pages 375-380, April.
    25. Kao, Shih-Chieh & Sale, Michael J. & Ashfaq, Moetasim & Uria Martinez, Rocio & Kaiser, Dale P. & Wei, Yaxing & Diffenbaugh, Noah S., 2015. "Projecting changes in annual hydropower generation using regional runoff data: An assessment of the United States federal hydropower plants," Energy, Elsevier, vol. 80(C), pages 239-250.
    26. Voisin, N. & Kintner-Meyer, M. & Skaggs, R. & Nguyen, T. & Wu, D. & Dirks, J. & Xie, Y. & Hejazi, M., 2016. "Vulnerability of the US western electric grid to hydro-climatological conditions: How bad can it get?," Energy, Elsevier, vol. 115(P1), pages 1-12.
    27. Su, Yufei & Kern, Jordan D. & Characklis, Gregory W., 2017. "The impact of wind power growth and hydrological uncertainty on financial losses from oversupply events in hydropower-dominated systems," Applied Energy, Elsevier, vol. 194(C), pages 172-183.
    28. Ke, Xinda & Wu, Di & Rice, Jennie & Kintner-Meyer, Michael & Lu, Ning, 2016. "Quantifying impacts of heat waves on power grid operation," Applied Energy, Elsevier, vol. 183(C), pages 504-512.
    29. Trutnevyte, Evelina, 2016. "Does cost optimization approximate the real-world energy transition?," Energy, Elsevier, vol. 106(C), pages 182-193.
    30. Jeremy Martinich & Allison Crimmins, 2019. "Climate damages and adaptation potential across diverse sectors of the United States," Nature Climate Change, Nature, vol. 9(5), pages 397-404, May.
    31. Wang, Jianxiao & Zhong, Haiwang & Ma, Ziming & Xia, Qing & Kang, Chongqing, 2017. "Review and prospect of integrated demand response in the multi-energy system," Applied Energy, Elsevier, vol. 202(C), pages 772-782.
    32. Dirks, James A. & Gorrissen, Willy J. & Hathaway, John H. & Skorski, Daniel C. & Scott, Michael J. & Pulsipher, Trenton C. & Huang, Maoyi & Liu, Ying & Rice, Jennie S., 2015. "Impacts of climate change on energy consumption and peak demand in buildings: A detailed regional approach," Energy, Elsevier, vol. 79(C), pages 20-32.
    33. Foley, A.M. & Ó Gallachóir, B.P. & Hur, J. & Baldick, R. & McKeogh, E.J., 2010. "A strategic review of electricity systems models," Energy, Elsevier, vol. 35(12), pages 4522-4530.
    34. Craig, Michael T. & Cohen, Stuart & Macknick, Jordan & Draxl, Caroline & Guerra, Omar J. & Sengupta, Manajit & Haupt, Sue Ellen & Hodge, Bri-Mathias & Brancucci, Carlo, 2018. "A review of the potential impacts of climate change on bulk power system planning and operations in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 255-267.
    35. Francisco Ralston Fonseca & Paulina Jaramillo & Mario Bergés & Edson Severnini, 2019. "Seasonal effects of climate change on intra-day electricity demand patterns," Climatic Change, Springer, vol. 154(3), pages 435-451, June.
    36. Li, Shuangqi & Gu, Chenghong & Zeng, Xianwu & Zhao, Pengfei & Pei, Xiaoze & Cheng, Shuang, 2021. "Vehicle-to-grid management for multi-time scale grid power balancing," Energy, Elsevier, vol. 234(C).
    37. S. W. D. Turner & N. Voisin & J. Fazio & D. Hua & M. Jourabchi, 2019. "Compound climate events transform electrical power shortfall risk in the Pacific Northwest," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    38. de Queiroz, Anderson Rodrigo & Faria, Victor A.D. & Lima, Luana M.M. & Lima, José W.M., 2019. "Hydropower revenues under the threat of climate change in Brazil," Renewable Energy, Elsevier, vol. 133(C), pages 873-882.
    39. Felix Creutzig & Peter Agoston & Jan Christoph Goldschmidt & Gunnar Luderer & Gregory Nemet & Robert C. Pietzcker, 2017. "The underestimated potential of solar energy to mitigate climate change," Nature Energy, Nature, vol. 2(9), pages 1-9, September.
    40. Tarroja, Brian & AghaKouchak, Amir & Samuelsen, Scott, 2016. "Quantifying climate change impacts on hydropower generation and implications on electric grid greenhouse gas emissions and operation," Energy, Elsevier, vol. 111(C), pages 295-305.
    41. Ian Kraucunas & Leon Clarke & James Dirks & John Hathaway & Mohamad Hejazi & Kathy Hibbard & Maoyi Huang & Chunlian Jin & Michael Kintner-Meyer & Kerstin Dam & Ruby Leung & Hong-Yi Li & Richard Moss &, 2015. "Investigating the nexus of climate, energy, water, and land at decision-relevant scales: the Platform for Regional Integrated Modeling and Analysis (PRIMA)," Climatic Change, Springer, vol. 129(3), pages 573-588, April.
    42. Matthew D. Bartos & Mikhail V. Chester, 2015. "Impacts of climate change on electric power supply in the Western United States," Nature Climate Change, Nature, vol. 5(8), pages 748-752, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Nan & Waegel, Alex & Hakkarainen, Max & Braham, William W. & Glass, Lior & Aviv, Dorit, 2023. "Blockchain + IoT sensor network to measure, evaluate and incentivize personal environmental accounting and efficient energy use in indoor spaces," Applied Energy, Elsevier, vol. 332(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Voisin, Nathalie & Dyreson, Ana & Fu, Tao & O'Connell, Matt & Turner, Sean W.D. & Zhou, Tian & Macknick, Jordan, 2020. "Impact of climate change on water availability and its propagation through the Western U.S. power grid," Applied Energy, Elsevier, vol. 276(C).
    2. Cohen, Stuart M. & Dyreson, Ana & Turner, Sean & Tidwell, Vince & Voisin, Nathalie & Miara, Ariel, 2022. "A multi-model framework for assessing long- and short-term climate influences on the electric grid," Applied Energy, Elsevier, vol. 317(C).
    3. Craig, Michael T. & Cohen, Stuart & Macknick, Jordan & Draxl, Caroline & Guerra, Omar J. & Sengupta, Manajit & Haupt, Sue Ellen & Hodge, Bri-Mathias & Brancucci, Carlo, 2018. "A review of the potential impacts of climate change on bulk power system planning and operations in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 255-267.
    4. Plaga, Leonie Sara & Bertsch, Valentin, 2023. "Methods for assessing climate uncertainty in energy system models — A systematic literature review," Applied Energy, Elsevier, vol. 331(C).
    5. Qin, Pengcheng & Xu, Hongmei & Liu, Min & Xiao, Chan & Forrest, Kate E. & Samuelsen, Scott & Tarroja, Brian, 2020. "Assessing concurrent effects of climate change on hydropower supply, electricity demand, and greenhouse gas emissions in the Upper Yangtze River Basin of China," Applied Energy, Elsevier, vol. 279(C).
    6. Klimenko, V.V. & Fedotova, E.V. & Tereshin, A.G., 2018. "Vulnerability of the Russian power industry to the climate change," Energy, Elsevier, vol. 142(C), pages 1010-1022.
    7. Jin, Yi & Scherer, Laura & Sutanudjaja, Edwin H. & Tukker, Arnold & Behrens, Paul, 2022. "Climate change and CCS increase the water vulnerability of China's thermoelectric power fleet," Energy, Elsevier, vol. 245(C).
    8. Turner, Sean W.D. & Nelson, Kristian & Voisin, Nathalie & Tidwell, Vincent & Miara, Ariel & Dyreson, Ana & Cohen, Stuart & Mantena, Dan & Jin, Julie & Warnken, Pete & Kao, Shih-Chieh, 2021. "A multi-reservoir model for projecting drought impacts on thermoelectric disruption risk across the Texas power grid," Energy, Elsevier, vol. 231(C).
    9. O'Connell, & Voisin, Nathalie & Macknick, & Fu,, 2019. "Sensitivity of Western U.S. power system dynamics to droughts compounded with fuel price variability," Applied Energy, Elsevier, vol. 247(C), pages 745-754.
    10. Jonas Savelsberg & Moritz Schillinger & Ingmar Schlecht & Hannes Weigt, 2018. "The Impact of Climate Change on Swiss Hydropower," Sustainability, MDPI, vol. 10(7), pages 1-23, July.
    11. Voisin, N. & Kintner-Meyer, M. & Skaggs, R. & Nguyen, T. & Wu, D. & Dirks, J. & Xie, Y. & Hejazi, M., 2016. "Vulnerability of the US western electric grid to hydro-climatological conditions: How bad can it get?," Energy, Elsevier, vol. 115(P1), pages 1-12.
    12. Thimet, P.J. & Mavromatidis, G., 2022. "Review of model-based electricity system transition scenarios: An analysis for Switzerland, Germany, France, and Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    13. Klemm, Christian & Vennemann, Peter, 2021. "Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Morales-España, Germán & Martínez-Gordón, Rafael & Sijm, Jos, 2022. "Classifying and modelling demand response in power systems," Energy, Elsevier, vol. 242(C).
    15. Wang, Chong & Ju, Ping & Wu, Feng & Pan, Xueping & Wang, Zhaoyu, 2022. "A systematic review on power system resilience from the perspective of generation, network, and load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    16. Su, Yufei & Kern, Jordan D. & Reed, Patrick M. & Characklis, Gregory W., 2020. "Compound hydrometeorological extremes across multiple timescales drive volatility in California electricity market prices and emissions," Applied Energy, Elsevier, vol. 276(C).
    17. Chen, Hao & Liu, Simin & Liu, Qiufeng & Shi, Xueli & Wei, Wendong & Han, Rong & Küfeoğlu, Sinan, 2021. "Estimating the impacts of climate change on electricity supply infrastructure: A case study of China," Energy Policy, Elsevier, vol. 150(C).
    18. Zhong, Ruida & Zhao, Tongtiegang & He, Yanhu & Chen, Xiaohong, 2019. "Hydropower change of the water tower of Asia in 21st century: A case of the Lancang River hydropower base, upper Mekong," Energy, Elsevier, vol. 179(C), pages 685-696.
    19. Felder, F.A. & Kumar, P., 2021. "A review of existing deep decarbonization models and their potential in policymaking," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    20. Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Zerrahn, Alexander & Murmann, Alexander & Launer, Jann & Fehler, Alexander & Gaumnitz, Felix & van Ouwerkerk, Jonas & Bußa, 2022. "Modeling flexibility in energy systems — comparison of power sector models based on simplified test cases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221022970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.