IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v29y2024i4d10.1007_s11027-024-10119-3.html
   My bibliography  Save this article

Assessing compounding climate-related stresses and development pathways on the power sector in the central U.S

Author

Listed:
  • Angelo Costa Gurgel

    (Massachusetts Institute of Technology)

  • John Reilly

    (Massachusetts Institute of Technology)

  • Jennifer Morris

    (Massachusetts Institute of Technology)

  • C. Adam Schlosser

    (Massachusetts Institute of Technology)

  • Xiang Gao

    (Massachusetts Institute of Technology)

  • Mei Yuan

    (Massachusetts Institute of Technology)

  • Karen Tapia-Ahumada

    (Electric Power Research Institute)

Abstract

Future configurations of the power system in the central region of the USA are dependent on relative costs of alternative power generation technologies, energy and environmental policies, and multiple climate-induced stresses. Higher demand in the summer months combined with compounding supply shocks in several power generation technologies can potentially cause a “perfect storm” leading to failure of the power system. Potential future climate stress must be incorporated in investment decisions and energy system planning and operation. We assess how projected future climate impacts on the power system would affect alternative pathways for the electricity sector considering a broad range of generation technologies and changes in demand. We calculate a “potential supply gap” metric for each pathway, system component, and sub-region of the US Heartland due to climate-induced effects on electricity demand and power generation. Potential supply gaps range from 5% in the North Central region under mild changes in climate to 21% in the Lakes-Mid Atlantic region under more severe climate change. We find increases in electricity demand to be more important in determining the size of the potential supply gap than stresses on power generation, while larger shares of renewables in the power system contribute to lower supply gaps. Our results provide a first step toward considering systemic climate impacts that may require changes in managing the grid or on potential additional capacity/reserves that may be needed.

Suggested Citation

  • Angelo Costa Gurgel & John Reilly & Jennifer Morris & C. Adam Schlosser & Xiang Gao & Mei Yuan & Karen Tapia-Ahumada, 2024. "Assessing compounding climate-related stresses and development pathways on the power sector in the central U.S," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(4), pages 1-34, April.
  • Handle: RePEc:spr:masfgc:v:29:y:2024:i:4:d:10.1007_s11027-024-10119-3
    DOI: 10.1007/s11027-024-10119-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-024-10119-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-024-10119-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David E. H. J. Gernaat & Harmen Sytze Boer & Vassilis Daioglou & Seleshi G. Yalew & Christoph Müller & Detlef P. Vuuren, 2021. "Climate change impacts on renewable energy supply," Nature Climate Change, Nature, vol. 11(2), pages 119-125, February.
    2. Xiang Gao & C. Adam Schlosser & Eric R. Morgan, 2018. "Potential impacts of climate warming and increased summer heat stress on the electric grid: a case study for a large power transformer (LPT) in the Northeast United States," Climatic Change, Springer, vol. 147(1), pages 107-118, March.
    3. Mort Webster & Karen Fisher-Vanden & Vijay Kumar & Richard B. Lammers & Joseph Perla, 2022. "Integrated hydrological, power system and economic modelling of climate impacts on electricity demand and cost," Nature Energy, Nature, vol. 7(2), pages 163-169, February.
    4. Daniel C. Steinberg & Bryan K. Mignone & Jordan Macknick & Yinong Sun & Kelly Eurek & Andrew Badger & Ben Livneh & Kristen Averyt, 2020. "Decomposing supply-side and demand-side impacts of climate change on the US electricity system through 2050," Climatic Change, Springer, vol. 158(2), pages 125-139, January.
    5. Daniel C. Steinberg & Bryan K. Mignone & Jordan Macknick & Yinong Sun & Kelly Eurek & Andrew Badger & Ben Livneh & Kristen Averyt, 2020. "Correction to: Decomposing supply-side and demand-side impacts of climate change on the US electricity system through 2050," Climatic Change, Springer, vol. 163(2), pages 1107-1108, November.
    6. Voisin, Nathalie & Dyreson, Ana & Fu, Tao & O'Connell, Matt & Turner, Sean W.D. & Zhou, Tian & Macknick, Jordan, 2020. "Impact of climate change on water availability and its propagation through the Western U.S. power grid," Applied Energy, Elsevier, vol. 276(C).
    7. Anthony Patt & Stefan Pfenninger & Johan Lilliestam, 2013. "Vulnerability of solar energy infrastructure and output to climate change," Climatic Change, Springer, vol. 121(1), pages 93-102, November.
    8. Michelle T. H. van Vliet & David Wiberg & Sylvain Leduc & Keywan Riahi, 2016. "Power-generation system vulnerability and adaptation to changes in climate and water resources," Nature Climate Change, Nature, vol. 6(4), pages 375-380, April.
    9. Voisin, N. & Kintner-Meyer, M. & Skaggs, R. & Nguyen, T. & Wu, D. & Dirks, J. & Xie, Y. & Hejazi, M., 2016. "Vulnerability of the US western electric grid to hydro-climatological conditions: How bad can it get?," Energy, Elsevier, vol. 115(P1), pages 1-12.
    10. Michelle T. H. van Vliet & John R. Yearsley & Fulco Ludwig & Stefan Vögele & Dennis P. Lettenmaier & Pavel Kabat, 2012. "Vulnerability of US and European electricity supply to climate change," Nature Climate Change, Nature, vol. 2(9), pages 676-681, September.
    11. Locatelli, Giorgio & Palerma, Emanuele & Mancini, Mauro, 2015. "Assessing the economics of large Energy Storage Plants with an optimisation methodology," Energy, Elsevier, vol. 83(C), pages 15-28.
    12. Zarrar Khan & Gokul Iyer & Pralit Patel & Son Kim & Mohamad Hejazi & Casey Burleyson & Marshall Wise, 2021. "Impacts of long-term temperature change and variability on electricity investments," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    13. Craig, Michael T. & Cohen, Stuart & Macknick, Jordan & Draxl, Caroline & Guerra, Omar J. & Sengupta, Manajit & Haupt, Sue Ellen & Hodge, Bri-Mathias & Brancucci, Carlo, 2018. "A review of the potential impacts of climate change on bulk power system planning and operations in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 255-267.
    14. Francisco Ralston Fonseca & Paulina Jaramillo & Mario Bergés & Edson Severnini, 2019. "Seasonal effects of climate change on intra-day electricity demand patterns," Climatic Change, Springer, vol. 154(3), pages 435-451, June.
    15. Turner, Sean W.D. & Nelson, Kristian & Voisin, Nathalie & Tidwell, Vincent & Miara, Ariel & Dyreson, Ana & Cohen, Stuart & Mantena, Dan & Jin, Julie & Warnken, Pete & Kao, Shih-Chieh, 2021. "A multi-reservoir model for projecting drought impacts on thermoelectric disruption risk across the Texas power grid," Energy, Elsevier, vol. 231(C).
    16. Fant, Charles & Boehlert, Brent & Strzepek, Kenneth & Larsen, Peter & White, Alisa & Gulati, Sahil & Li, Yue & Martinich, Jeremy, 2020. "Climate change impacts and costs to U.S. electricity transmission and distribution infrastructure," Energy, Elsevier, vol. 195(C).
    17. S. W. D. Turner & N. Voisin & J. Fazio & D. Hua & M. Jourabchi, 2019. "Compound climate events transform electrical power shortfall risk in the Pacific Northwest," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cohen, Stuart M. & Dyreson, Ana & Turner, Sean & Tidwell, Vince & Voisin, Nathalie & Miara, Ariel, 2022. "A multi-model framework for assessing long- and short-term climate influences on the electric grid," Applied Energy, Elsevier, vol. 317(C).
    2. Oikonomou, Konstantinos & Tarroja, Brian & Kern, Jordan & Voisin, Nathalie, 2022. "Core process representation in power system operational models: Gaps, challenges, and opportunities for multisector dynamics research," Energy, Elsevier, vol. 238(PC).
    3. Voisin, Nathalie & Dyreson, Ana & Fu, Tao & O'Connell, Matt & Turner, Sean W.D. & Zhou, Tian & Macknick, Jordan, 2020. "Impact of climate change on water availability and its propagation through the Western U.S. power grid," Applied Energy, Elsevier, vol. 276(C).
    4. Plaga, Leonie Sara & Bertsch, Valentin, 2023. "Methods for assessing climate uncertainty in energy system models — A systematic literature review," Applied Energy, Elsevier, vol. 331(C).
    5. O'Connell, & Voisin, Nathalie & Macknick, & Fu,, 2019. "Sensitivity of Western U.S. power system dynamics to droughts compounded with fuel price variability," Applied Energy, Elsevier, vol. 247(C), pages 745-754.
    6. Julia K. Szinai & David Yates & Pedro A. Sánchez-Pérez & Martin Staadecker & Daniel M. Kammen & Andrew D. Jones & Patricia Hidalgo-Gonzalez, 2024. "Climate change and its influence on water systems increases the cost of electricity system decarbonization," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Turner, Sean W.D. & Nelson, Kristian & Voisin, Nathalie & Tidwell, Vincent & Miara, Ariel & Dyreson, Ana & Cohen, Stuart & Mantena, Dan & Jin, Julie & Warnken, Pete & Kao, Shih-Chieh, 2021. "A multi-reservoir model for projecting drought impacts on thermoelectric disruption risk across the Texas power grid," Energy, Elsevier, vol. 231(C).
    8. Zhang, Yi & Cheng, Chuntian & Yang, Tiantian & Jin, Xiaoyu & Jia, Zebin & Shen, Jianjian & Wu, Xinyu, 2022. "Assessment of climate change impacts on the hydro-wind-solar energy supply system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    9. Zhao, Xiaohu & Huang, Guohe & Li, Yongping & Lu, Chen, 2023. "Responses of hydroelectricity generation to streamflow drought under climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    10. Chen, Hao & Liu, Simin & Liu, Qiufeng & Shi, Xueli & Wei, Wendong & Han, Rong & Küfeoğlu, Sinan, 2021. "Estimating the impacts of climate change on electricity supply infrastructure: A case study of China," Energy Policy, Elsevier, vol. 150(C).
    11. Ayoub, Ali & Gjorgiev, Blaže & Sansavini, Giovanni, 2018. "Cooling towers performance in a changing climate: Techno-economic modeling and design optimization," Energy, Elsevier, vol. 160(C), pages 1133-1143.
    12. Srihari Sundar & Michael T. Craig & Ashley E. Payne & David J. Brayshaw & Flavio Lehner, 2023. "Meteorological drivers of resource adequacy failures in current and high renewable Western U.S. power systems," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Lei, Hongxuan & Liu, Pan & Cheng, Qian & Xu, Huan & Liu, Weibo & Zheng, Yalian & Chen, Xiangding & Zhou, Yong, 2024. "Frequency, duration, severity of energy drought and its propagation in hydro-wind-photovoltaic complementary systems," Renewable Energy, Elsevier, vol. 230(C).
    14. Fanny Groundstroem & Sirkku Juhola, 2021. "Using systems thinking and causal loop diagrams to identify cascading climate change impacts on bioenergy supply systems," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(7), pages 1-48, October.
    15. Klimenko, V.V. & Fedotova, E.V. & Tereshin, A.G., 2018. "Vulnerability of the Russian power industry to the climate change," Energy, Elsevier, vol. 142(C), pages 1010-1022.
    16. Cohen, S.M. & Iyer, G.C. & Brown, M. & Macknick, J. & Wise, M. & Binsted, M. & Voisin, N. & Rice, J. & Hejazi, M., 2021. "How structural differences influence cross-model consistency: An electric sector case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    17. Craig, Christopher A. & Feng, Song, 2016. "An examination of electricity generation by utility organizations in the Southeast United States," Energy, Elsevier, vol. 116(P1), pages 601-608.
    18. Qin, Pengcheng & Xu, Hongmei & Liu, Min & Xiao, Chan & Forrest, Kate E. & Samuelsen, Scott & Tarroja, Brian, 2020. "Assessing concurrent effects of climate change on hydropower supply, electricity demand, and greenhouse gas emissions in the Upper Yangtze River Basin of China," Applied Energy, Elsevier, vol. 279(C).
    19. Bromley-Dulfano, Isaac & Florez, Julian & Craig, Michael T., 2021. "Reliability benefits of wide-area renewable energy planning across the Western United States," Renewable Energy, Elsevier, vol. 179(C), pages 1487-1499.
    20. Pengcheng Qin & Hongmei Xu & Min Liu & Lüliu Liu & Chan Xiao & Iman Mallakpour & Matin Rahnamay Naeini & Kuolin Hsu & Soroosh Sorooshian, 2022. "Projected impacts of climate change on major dams in the Upper Yangtze River Basin," Climatic Change, Springer, vol. 170(1), pages 1-24, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:29:y:2024:i:4:d:10.1007_s11027-024-10119-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.