IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v380y2025ics0306261924023316.html
   My bibliography  Save this article

When do different scenarios of projected electricity demand start to meaningfully diverge?

Author

Listed:
  • Burleyson, Casey D.
  • Khan, Zarrar
  • Kulshresta, Misha
  • Voisin, Nathalie
  • Zhao, Mengqi
  • Rice, Jennie S.

Abstract

Resource adequacy studies look at balancing electricity supply and demand on 10- to 15-year time horizons while asset investment planning typically evaluates returns on 20- to 40-year time horizons. Projections of electricity demand are factored into the decision-making in both cases. Climate, energy policy, and socioeconomic changes are key uncertainties known to influence electricity demands, but their relative importance for demands over the next 10–40 years is unclear. The power sector would benefit from a better understanding of the need to characterize these uncertainties for resource adequacy and investment planning. In this study, we quantify when projected United States (U.S.) electricity demands start to meaningfully diverge in response to a range of climate, energy policy, and socioeconomic drivers. We use a wide yet plausible range of 21st century scenarios for the U.S. The projections span two population/economic growth scenarios (Shared Socioeconomic Pathways 3 and 5) and two climate/energy policy scenarios, one including climate mitigation policies and one without (Representative Concentration Pathways 4.5 and 8.5). Each climate/energy policy scenario has two warming levels to reflect a range of climate model uncertainty. We show that the socioeconomic scenario matters almost immediately – within the next 10 years, the climate/policy scenario matters within 25–30 years, and the climate model uncertainty matters only after 50+ years. This work can inform the power sector working to integrate climate change uncertainties into their decision-making.

Suggested Citation

  • Burleyson, Casey D. & Khan, Zarrar & Kulshresta, Misha & Voisin, Nathalie & Zhao, Mengqi & Rice, Jennie S., 2025. "When do different scenarios of projected electricity demand start to meaningfully diverge?," Applied Energy, Elsevier, vol. 380(C).
  • Handle: RePEc:eee:appene:v:380:y:2025:i:c:s0306261924023316
    DOI: 10.1016/j.apenergy.2024.124948
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924023316
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124948?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jennifer Cronin & Gabrial Anandarajah & Olivier Dessens, 2018. "Climate change impacts on the energy system: a review of trends and gaps," Climatic Change, Springer, vol. 151(2), pages 79-93, November.
    2. Clarke, Leon & Eom, Jiyong & Marten, Elke Hodson & Horowitz, Russell & Kyle, Page & Link, Robert & Mignone, Bryan K. & Mundra, Anupriya & Zhou, Yuyu, 2018. "Effects of long-term climate change on global building energy expenditures," Energy Economics, Elsevier, vol. 72(C), pages 667-677.
    3. Staffell, Iain & Pfenninger, Stefan, 2018. "The increasing impact of weather on electricity supply and demand," Energy, Elsevier, vol. 145(C), pages 65-78.
    4. Daniel C. Steinberg & Bryan K. Mignone & Jordan Macknick & Yinong Sun & Kelly Eurek & Andrew Badger & Ben Livneh & Kristen Averyt, 2020. "Decomposing supply-side and demand-side impacts of climate change on the US electricity system through 2050," Climatic Change, Springer, vol. 158(2), pages 125-139, January.
    5. Gokul Iyer & Yang Ou & James Edmonds & Allen A. Fawcett & Nathan Hultman & James McFarland & Jay Fuhrman & Stephanie Waldhoff & Haewon McJeon, 2022. "Ratcheting of climate pledges needed to limit peak global warming," Nature Climate Change, Nature, vol. 12(12), pages 1129-1135, December.
    6. Daniel C. Steinberg & Bryan K. Mignone & Jordan Macknick & Yinong Sun & Kelly Eurek & Andrew Badger & Ben Livneh & Kristen Averyt, 2020. "Correction to: Decomposing supply-side and demand-side impacts of climate change on the US electricity system through 2050," Climatic Change, Springer, vol. 163(2), pages 1107-1108, November.
    7. Plaga, Leonie Sara & Bertsch, Valentin, 2023. "Methods for assessing climate uncertainty in energy system models — A systematic literature review," Applied Energy, Elsevier, vol. 331(C).
    8. Zhou, Yuyu & Clarke, Leon & Eom, Jiyong & Kyle, Page & Patel, Pralit & Kim, Son H. & Dirks, James & Jensen, Erik & Liu, Ying & Rice, Jennie & Schmidt, Laurel & Seiple, Timothy, 2014. "Modeling the effect of climate change on U.S. state-level buildings energy demands in an integrated assessment framework," Applied Energy, Elsevier, vol. 113(C), pages 1077-1088.
    9. Zarrar Khan & Gokul Iyer & Pralit Patel & Son Kim & Mohamad Hejazi & Casey Burleyson & Marshall Wise, 2021. "Impacts of long-term temperature change and variability on electricity investments," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    10. Amorim, Filipa & Simoes, Sofia G. & Siggini, Gildas & Assoumou, Edi, 2020. "Introducing climate variability in energy systems modelling," Energy, Elsevier, vol. 206(C).
    11. Burillo, Daniel & Chester, Mikhail V. & Pincetl, Stephanie & Fournier, Eric D. & Reyna, Janet, 2019. "Forecasting peak electricity demand for Los Angeles considering higher air temperatures due to climate change," Applied Energy, Elsevier, vol. 236(C), pages 1-9.
    12. Jianhua Huang & Kevin Robert Gurney, 2016. "Impact of climate change on U.S. building energy demand: sensitivity to spatiotemporal scales, balance point temperature, and population distribution," Climatic Change, Springer, vol. 137(1), pages 171-185, July.
    13. Wachtmeister, Henrik & Henke, Petter & Höök, Mikael, 2018. "Oil projections in retrospect: Revisions, accuracy and current uncertainty," Applied Energy, Elsevier, vol. 220(C), pages 138-153.
    14. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Plaga, Leonie Sara & Bertsch, Valentin, 2023. "Methods for assessing climate uncertainty in energy system models — A systematic literature review," Applied Energy, Elsevier, vol. 331(C).
    2. Fanny Groundstroem & Sirkku Juhola, 2021. "Using systems thinking and causal loop diagrams to identify cascading climate change impacts on bioenergy supply systems," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(7), pages 1-48, October.
    3. Angelo Costa Gurgel & John Reilly & Jennifer Morris & C. Adam Schlosser & Xiang Gao & Mei Yuan & Karen Tapia-Ahumada, 2024. "Assessing compounding climate-related stresses and development pathways on the power sector in the central U.S," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(4), pages 1-34, April.
    4. Oikonomou, Konstantinos & Tarroja, Brian & Kern, Jordan & Voisin, Nathalie, 2022. "Core process representation in power system operational models: Gaps, challenges, and opportunities for multisector dynamics research," Energy, Elsevier, vol. 238(PC).
    5. Burleyson, Casey D. & Iyer, Gokul & Hejazi, Mohamad & Kim, Sonny & Kyle, Page & Rice, Jennie S. & Smith, Amanda D. & Taylor, Z. Todd & Voisin, Nathalie & Xie, Yulong, 2020. "Future western U.S. building electricity consumption in response to climate and population drivers: A comparative study of the impact of model structure," Energy, Elsevier, vol. 208(C).
    6. Figueiredo, Raquel & Nunes, Pedro & Brito, Miguel C., 2021. "The resilience of a decarbonized power system to climate variability: Portuguese case study," Energy, Elsevier, vol. 224(C).
    7. Nnaemeka Vincent Emodi & Taha Chaiechi & ABM Rabiul Alam Beg, 2018. "The impact of climate change on electricity demand in Australia," Energy & Environment, , vol. 29(7), pages 1263-1297, November.
    8. Hu, Wenxuan & Scholz, Yvonne & Yeligeti, Madhura & Deng, Ying & Jochem, Patrick, 2024. "Future electricity demand for Europe: Unraveling the dynamics of the Temperature Response Function," Applied Energy, Elsevier, vol. 368(C).
    9. Fortes, Patrícia & Simoes, Sofia G. & Amorim, Filipa & Siggini, Gildas & Sessa, Valentina & Saint-Drenan, Yves-Marie & Carvalho, Sílvia & Mujtaba, Babar & Diogo, Paulo & Assoumou, Edi, 2022. "How sensitive is a carbon-neutral power sector to climate change? The interplay between hydro, solar and wind for Portugal," Energy, Elsevier, vol. 239(PB).
    10. Cohen, S.M. & Iyer, G.C. & Brown, M. & Macknick, J. & Wise, M. & Binsted, M. & Voisin, N. & Rice, J. & Hejazi, M., 2021. "How structural differences influence cross-model consistency: An electric sector case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    11. Qin, Pengcheng & Xu, Hongmei & Liu, Min & Xiao, Chan & Forrest, Kate E. & Samuelsen, Scott & Tarroja, Brian, 2020. "Assessing concurrent effects of climate change on hydropower supply, electricity demand, and greenhouse gas emissions in the Upper Yangtze River Basin of China," Applied Energy, Elsevier, vol. 279(C).
    12. Richard Schmitz & Franziska Flachsbarth & Leonie Sara Plaga & Martin Braun & Philipp Hartel, 2025. "Energy Security and Resilience: Reviewing Concepts and Advancing Planning Perspectives for Transforming Integrated Energy Systems," Papers 2504.18396, arXiv.org.
    13. Chenghao Wang & Jiyun Song & Dachuan Shi & Janet L. Reyna & Henry Horsey & Sarah Feron & Yuyu Zhou & Zutao Ouyang & Ying Li & Robert B. Jackson, 2023. "Impacts of climate change, population growth, and power sector decarbonization on urban building energy use," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    14. Voisin, Nathalie & Dyreson, Ana & Fu, Tao & O'Connell, Matt & Turner, Sean W.D. & Zhou, Tian & Macknick, Jordan, 2020. "Impact of climate change on water availability and its propagation through the Western U.S. power grid," Applied Energy, Elsevier, vol. 276(C).
    15. Jones, Andrew & Nock, Destenie & Samaras, Constantine & Qiu, Yueming (Lucy) & Xing, Bo, 2023. "Climate change impacts on future residential electricity consumption and energy burden: A case study in Phoenix, Arizona," Energy Policy, Elsevier, vol. 183(C).
    16. Angel Manuel Benitez Rodriguez & Ian Michael Trotter, 2019. "Climate change scenarios for Paraguayan power demand 2017–2050," Climatic Change, Springer, vol. 156(3), pages 425-445, October.
    17. Burleyson, Casey D. & Voisin, Nathalie & Taylor, Z. Todd & Xie, Yulong & Kraucunas, Ian, 2018. "Simulated building energy demand biases resulting from the use of representative weather stations," Applied Energy, Elsevier, vol. 209(C), pages 516-528.
    18. Pérez-Andreu, Víctor & Aparicio-Fernández, Carolina & Martínez-Ibernón, Ana & Vivancos, José-Luis, 2018. "Impact of climate change on heating and cooling energy demand in a residential building in a Mediterranean climate," Energy, Elsevier, vol. 165(PA), pages 63-74.
    19. Hiva Rastegar & Gabriel Eweje & Aymen Sajjad, 2024. "The impact of environmental policy on renewable energy innovation: A systematic literature review and research directions," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(4), pages 3859-3876, August.
    20. Yang, Yuchen & Javanroodi, Kavan & Nik, Vahid M., 2021. "Climate change and energy performance of European residential building stocks – A comprehensive impact assessment using climate big data from the coordinated regional climate downscaling experiment," Applied Energy, Elsevier, vol. 298(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:380:y:2025:i:c:s0306261924023316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.