IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v144y2021ics1364032121002999.html
   My bibliography  Save this article

How structural differences influence cross-model consistency: An electric sector case study

Author

Listed:
  • Cohen, S.M.
  • Iyer, G.C.
  • Brown, M.
  • Macknick, J.
  • Wise, M.
  • Binsted, M.
  • Voisin, N.
  • Rice, J.
  • Hejazi, M.

Abstract

Multiple models are often employed to examine a range of possible outcomes for one or more scenarios, yielding insights into causal relationships and their uncertainties. Electric sector capacity expansion scenarios are commonly explored in such efforts due to the electric sector's overall economic importance, but multi-model results typically span a broad solution space despite efforts to harmonize input assumptions, making decision implications difficult to discern. This study investigates the relationship between efforts to harmonize input assumptions across multiple models and the resulting consistency of model outputs under different electric sector scenarios. We compare cross-model consistency between two electric sector capacity expansion models (GCAM-USA and ReEDS) for six electric sector scenarios with alternate assumptions about fossil fuel prices, technology innovation, and economy-wide transitions under four harmonization configurations that vary model representations of electricity demand, fuel prices, renewable resources, and capacity retirements. These comparisons reveal that cross-model consistency can vary across scenarios under a given harmonization configuration, suggesting that harmonization efforts must often be scenario-specific to achieve comparable cross-model consistency. Harmonization does not always improve consistency due to complex interactions between input assumptions, harmonized features, and unharmonized features. However, thorough harmonization can reduce uncertainty bounds and reveal insights into what drives cross-model consistency between two or more models. This work provides researchers and decision makers with a framework to carefully consider tradeoffs between effort and impact of harmonization efforts within multi-model analysis activities.

Suggested Citation

  • Cohen, S.M. & Iyer, G.C. & Brown, M. & Macknick, J. & Wise, M. & Binsted, M. & Voisin, N. & Rice, J. & Hejazi, M., 2021. "How structural differences influence cross-model consistency: An electric sector case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
  • Handle: RePEc:eee:rensus:v:144:y:2021:i:c:s1364032121002999
    DOI: 10.1016/j.rser.2021.111009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121002999
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Collins, Seán & Deane, John Paul & Poncelet, Kris & Panos, Evangelos & Pietzcker, Robert C. & Delarue, Erik & Ó Gallachóir, Brian Pádraig, 2017. "Integrating short term variations of the power system into integrated energy system models: A methodological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 839-856.
    2. Lu Liu & Mohamad Hejazi & Gokul Iyer & Barton A. Forman, 2019. "Implications of water constraints on electricity capacity expansion in the United States," Nature Sustainability, Nature, vol. 2(3), pages 206-213, March.
    3. Pietzcker, Robert C. & Ueckerdt, Falko & Carrara, Samuel & de Boer, Harmen Sytze & Després, Jacques & Fujimori, Shinichiro & Johnson, Nils & Kitous, Alban & Scholz, Yvonne & Sullivan, Patrick & Ludere, 2017. "System integration of wind and solar power in integrated assessment models: A cross-model evaluation of new approaches," Energy Economics, Elsevier, vol. 64(C), pages 583-599.
    4. Daniel C. Steinberg & Bryan K. Mignone & Jordan Macknick & Yinong Sun & Kelly Eurek & Andrew Badger & Ben Livneh & Kristen Averyt, 2020. "Decomposing supply-side and demand-side impacts of climate change on the US electricity system through 2050," Climatic Change, Springer, vol. 158(2), pages 125-139, January.
    5. Daniel C. Steinberg & Bryan K. Mignone & Jordan Macknick & Yinong Sun & Kelly Eurek & Andrew Badger & Ben Livneh & Kristen Averyt, 2020. "Correction to: Decomposing supply-side and demand-side impacts of climate change on the US electricity system through 2050," Climatic Change, Springer, vol. 163(2), pages 1107-1108, November.
    6. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    7. Allen A. Fawcett, Leon E. Clarke, and John P. Weyant, 2014. "Introduction to EMF 24," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    8. Mai, Trieu & Bistline, John & Sun, Yinong & Cole, Wesley & Marcy, Cara & Namovicz, Chris & Young, David, 2018. "The role of input assumptions and model structures in projections of variable renewable energy: A multi-model perspective of the U.S. electricity system," Energy Economics, Elsevier, vol. 76(C), pages 313-324.
    9. Clarke, Leon & Krey, Volker & Weyant, John & Chaturvedi, Vaibhav, 2012. "Regional energy system variation in global models: Results from the Asian Modeling Exercise scenarios," Energy Economics, Elsevier, vol. 34(S3), pages 293-305.
    10. Gokul Iyer & Catherine Ledna & Leon Clarke & James Edmonds & Haewon McJeon & Page Kyle & James H Williams, 2017. "Measuring progress from nationally determined contributions to mid-century strategies," Nature Climate Change, Nature, vol. 7(12), pages 871-874, December.
    11. Clarke, John F. & Edmonds, J. A., 1993. "Modelling energy technologies in a competitive market," Energy Economics, Elsevier, vol. 15(2), pages 123-129, April.
    12. Huntington, Hillard G. & Bhargava, Abha & Daniels, David & Weyant, John P. & Avraam, Charalampos & Bistline, John & Edmonds, James A. & Giarola, Sara & Hawkes, Adam & Hansen, Matthew & Johnston, Peter, 2020. "Key findings from the core North American scenarios in the EMF34 intermodel comparison," Energy Policy, Elsevier, vol. 144(C).
    13. Hodson, Elke L. & Brown, Maxwell & Cohen, Stuart & Showalter, Sharon & Wise, Marshall & Wood, Frances & Caron, Justin & Feijoo, Felipe & Iyer, Gokul & Cleary, Kathryne, 2018. "U.S. energy sector impacts of technology innovation, fuel price, and electric sector CO2 policy: Results from the EMF 32 model intercomparison study," Energy Economics, Elsevier, vol. 73(C), pages 352-370.
    14. John Weyant & Elmar Kriegler, 2014. "Preface and introduction to EMF 27," Climatic Change, Springer, vol. 123(3), pages 345-352, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Plaga, Leonie Sara & Bertsch, Valentin, 2023. "Methods for assessing climate uncertainty in energy system models — A systematic literature review," Applied Energy, Elsevier, vol. 331(C).
    2. Henry, Candise L. & Eshraghi, Hadi & Lugovoy, Oleg & Waite, Michael B. & DeCarolis, Joseph F. & Farnham, David J. & Ruggles, Tyler H. & Peer, Rebecca A.M. & Wu, Yuezi & de Queiroz, Anderson & Potashni, 2021. "Promoting reproducibility and increased collaboration in electric sector capacity expansion models with community benchmarking and intercomparison efforts," Applied Energy, Elsevier, vol. 304(C).
    3. Chang, Miguel & Lund, Henrik & Thellufsen, Jakob Zinck & Østergaard, Poul Alberg, 2023. "Perspectives on purpose-driven coupling of energy system models," Energy, Elsevier, vol. 265(C).
    4. Oikonomou, Konstantinos & Tarroja, Brian & Kern, Jordan & Voisin, Nathalie, 2022. "Core process representation in power system operational models: Gaps, challenges, and opportunities for multisector dynamics research," Energy, Elsevier, vol. 238(PC).
    5. Bistline, John E.T. & Blanford, Geoffrey J., 2020. "Value of technology in the U.S. electric power sector: Impacts of full portfolios and technological change on the costs of meeting decarbonization goals," Energy Economics, Elsevier, vol. 86(C).
    6. Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Murmann, Alexander & Launer, Jann & Gaumnitz, Felix & van Ouwerkerk, Jonas & Mikurda, Jennifer & Torralba-Díaz, Laura, 2022. "Model-related outcome differences in power system models with sector coupling—Quantification and drivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    7. Xexakis, Georgios & Hansmann, Ralph & Volken, Sandra P. & Trutnevyte, Evelina, 2020. "Models on the wrong track: Model-based electricity supply scenarios in Switzerland are not aligned with the perspectives of energy experts and the public," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    8. van Ouwerkerk, Jonas & Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Zerrahn, Alexander & Murmann, Alexander & Launer, Jann & Torralba-Díaz, Laura & Bußar, Christian, 2022. "Impacts of power sector model features on optimal capacity expansion: A comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    9. Seljom, Pernille & Kvalbein, Lisa & Hellemo, Lars & Kaut, Michal & Ortiz, Miguel Muñoz, 2021. "Stochastic modelling of variable renewables in long-term energy models: Dataset, scenario generation & quality of results," Energy, Elsevier, vol. 236(C).
    10. Prina, Matteo Giacomo & Nastasi, Benedetto & Groppi, Daniele & Misconel, Steffi & Garcia, Davide Astiaso & Sparber, Wolfram, 2022. "Comparison methods of energy system frameworks, models and scenario results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Backe, Stian & Ahang, Mohammadreza & Tomasgard, Asgeir, 2021. "Stable stochastic capacity expansion with variable renewables: Comparing moment matching and stratified scenario generation sampling," Applied Energy, Elsevier, vol. 302(C).
    12. Fanny Groundstroem & Sirkku Juhola, 2021. "Using systems thinking and causal loop diagrams to identify cascading climate change impacts on bioenergy supply systems," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(7), pages 1-48, October.
    13. Backe, Stian & Zwickl-Bernhard, Sebastian & Schwabeneder, Daniel & Auer, Hans & Korpås, Magnus & Tomasgard, Asgeir, 2022. "Impact of energy communities on the European electricity and heating system decarbonization pathway: Comparing local and global flexibility responses," Applied Energy, Elsevier, vol. 323(C).
    14. Hilbers, Adriaan P. & Brayshaw, David J. & Gandy, Axel, 2019. "Importance subsampling: improving power system planning under climate-based uncertainty," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    15. Ou, Yang & Shi, Wenjing & Smith, Steven J. & Ledna, Catherine M. & West, J. Jason & Nolte, Christopher G. & Loughlin, Daniel H., 2018. "Estimating environmental co-benefits of U.S. low-carbon pathways using an integrated assessment model with state-level resolution," Applied Energy, Elsevier, vol. 216(C), pages 482-493.
    16. Licandeo, Francisca & Flores, Francisco & Feijoo, Felipe, 2023. "Assessing the impacts of economy-wide emissions policies in the water, energy, and land systems considering water scarcity scenarios," Applied Energy, Elsevier, vol. 342(C).
    17. Miri, Mohammad & Saffari, Mohammadali & Arjmand, Reza & McPherson, Madeleine, 2022. "Integrated models in action: Analyzing flexibility in the Canadian power system toward a zero-emission future," Energy, Elsevier, vol. 261(PA).
    18. Chaturvedi, Vaibhav & Kim, Sonny & Smith, Steven J. & Clarke, Leon & Yuyu, Zhou & Kyle, Page & Patel, Pralit, 2013. "Model evaluation and hindcasting: An experiment with an integrated assessment model," Energy, Elsevier, vol. 61(C), pages 479-490.
    19. Sam Hamels, 2021. "CO 2 Intensities and Primary Energy Factors in the Future European Electricity System," Energies, MDPI, vol. 14(8), pages 1-30, April.
    20. Mowers, Matthew & Mignone, Bryan K. & Steinberg, Daniel C., 2023. "Quantifying value and representing competitiveness of electricity system technologies in economic models," Applied Energy, Elsevier, vol. 329(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:144:y:2021:i:c:s1364032121002999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.