IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v2y2019i3d10.1038_s41893-019-0235-0.html
   My bibliography  Save this article

Implications of water constraints on electricity capacity expansion in the United States

Author

Listed:
  • Lu Liu

    (Pacific Northwest National Laboratory)

  • Mohamad Hejazi

    (Pacific Northwest National Laboratory
    University of Maryland)

  • Gokul Iyer

    (Pacific Northwest National Laboratory)

  • Barton A. Forman

    (Pacific Northwest National Laboratory
    University of Maryland)

Abstract

The development of new electricity generation capacity is constrained by water resource availability. However, the sufficiency of available water resources is rarely incorporated into the planning of electricity capacity expansion in the United States. Previous studies on the implications of water constraints on US electricity generation are limited in terms of scale and robustness. Here, we extend previous studies by including physical water constraints within a state-level model of the US energy system embedded within a global integrated assessment model (GCAM-USA) that integrates both supply and demand effects under a consistent framework. We show that water constraints have two general effects across the United States: (1) to increase the cost of electricity generation, which results in slightly reduced electrification of end-use sectors, and (2) to incentivize early retirement of water-intensive technologies before the end of their designed lifetimes, while simultaneously boosting investment in less water-dependent technologies. Our results suggest that water availability constraints may cause substantial capital stock turnover and result in non-negligible economic costs for the western United States, whereas fewer impacts may be anticipated in the eastern United States. Our work emphasizes the need to integrate water availability constraints into electricity capacity planning and highlights the state-level challenges to facilitate regional strategic resource planning.

Suggested Citation

  • Lu Liu & Mohamad Hejazi & Gokul Iyer & Barton A. Forman, 2019. "Implications of water constraints on electricity capacity expansion in the United States," Nature Sustainability, Nature, vol. 2(3), pages 206-213, March.
  • Handle: RePEc:nat:natsus:v:2:y:2019:i:3:d:10.1038_s41893-019-0235-0
    DOI: 10.1038/s41893-019-0235-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-019-0235-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-019-0235-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cohen, S.M. & Iyer, G.C. & Brown, M. & Macknick, J. & Wise, M. & Binsted, M. & Voisin, N. & Rice, J. & Hejazi, M., 2021. "How structural differences influence cross-model consistency: An electric sector case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Jin, Yi & Scherer, Laura & Sutanudjaja, Edwin H. & Tukker, Arnold & Behrens, Paul, 2022. "Climate change and CCS increase the water vulnerability of China's thermoelectric power fleet," Energy, Elsevier, vol. 245(C).
    3. Kun Peng & Kuishuang Feng & Bin Chen & Yuli Shan & Ning Zhang & Peng Wang & Kai Fang & Yanchao Bai & Xiaowei Zou & Wendong Wei & Xinyi Geng & Yiyi Zhang & Jiashuo Li, 2023. "The global power sector’s low-carbon transition may enhance sustainable development goal achievement," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Zhai, Haibo & Rubin, Edward S. & Grol, Eric J. & O'Connell, Andrew C. & Wu, Zitao & Lewis, Eric G., 2022. "Dry cooling retrofits at existing fossil fuel-fired power plants in a water-stressed region: Tradeoffs in water savings, cost, and capacity shortfalls," Applied Energy, Elsevier, vol. 306(PA).
    5. Lv, J. & Li, Y.P. & Huang, G.H. & Suo, C. & Mei, H. & Li, Y., 2020. "Quantifying the impact of water availability on China's energy system under uncertainties: A perceptive of energy-water nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Licandeo, Francisca & Flores, Francisco & Feijoo, Felipe, 2023. "Assessing the impacts of economy-wide emissions policies in the water, energy, and land systems considering water scarcity scenarios," Applied Energy, Elsevier, vol. 342(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:2:y:2019:i:3:d:10.1038_s41893-019-0235-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.