IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v134y2020ics1364032120306092.html
   My bibliography  Save this article

Quantifying the impact of water availability on China's energy system under uncertainties: A perceptive of energy-water nexus

Author

Listed:
  • Lv, J.
  • Li, Y.P.
  • Huang, G.H.
  • Suo, C.
  • Mei, H.
  • Li, Y.

Abstract

Energy and water are interdependent and interwoven, forming energy-water nexus. The chronic of water shortage in China can make a negative impact on energy system and further hinder the socioeconomic sustainable development. The coal-dominated energy structure consumes a large amount of water, which further intensities the dilemma between increasing energy demand and shrinking water resources. In this study, a China's non-deterministic energy-water nexus (CNEWN) model is established through incorporating techniques of Monte Carlo simulation (MCS) and interval-parameter programming (IPP). The CNEWN model is capable of simulating probability distributions of water availability, reflecting uncertainties derived from economic development and technology choice, and providing optimal scheme for China's energy system management over a long-term (2021–2050) horizon. Multiple scenarios are set up to quantify the impact of water availability on the national-scale energy system and sensitivity analysis is performed to assess the influence of uncertain parameters on modeling outputs. Results indicate that a variety of uncertainties existed in the energy system's parameters can affect the modeling outputs and the making decisions. Strict water availability constraints can stimulate the development of renewable energies and promote the transition of energy structure to clean and low-carbon pattern. Results also reveal that water scarcity can have a significant influence on the national energy system assocaited with water resources utilization, pollutant and carbon dioxide emissions, as well as system cost. The results provide a solid scientific basis for coordinately optimizing energy and water as well as effectively supporting the sustainable development of national energy system.

Suggested Citation

  • Lv, J. & Li, Y.P. & Huang, G.H. & Suo, C. & Mei, H. & Li, Y., 2020. "Quantifying the impact of water availability on China's energy system under uncertainties: A perceptive of energy-water nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
  • Handle: RePEc:eee:rensus:v:134:y:2020:i:c:s1364032120306092
    DOI: 10.1016/j.rser.2020.110321
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120306092
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110321?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu Liu & Mohamad Hejazi & Gokul Iyer & Barton A. Forman, 2019. "Implications of water constraints on electricity capacity expansion in the United States," Nature Sustainability, Nature, vol. 2(3), pages 206-213, March.
    2. Hamiche, Ait Mimoune & Stambouli, Amine Boudghene & Flazi, Samir, 2016. "A review of the water-energy nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 319-331.
    3. Feng, Kuishuang & Hubacek, Klaus & Siu, Yim Ling & Li, Xin, 2014. "The energy and water nexus in Chinese electricity production: A hybrid life cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 342-355.
    4. Huang, Weilong & Ma, Ding & Chen, Wenying, 2017. "Connecting water and energy: Assessing the impacts of carbon and water constraints on China’s power sector," Applied Energy, Elsevier, vol. 185(P2), pages 1497-1505.
    5. Cai, Yanpeng & Cai, Jianying & Xu, Linyu & Tan, Qian & Xu, Qiao, 2019. "Integrated risk analysis of water-energy nexus systems based on systems dynamics, orthogonal design and copula analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 125-137.
    6. Peer, Rebecca A.M. & Sanders, Kelly T., 2018. "The water consequences of a transitioning US power sector," Applied Energy, Elsevier, vol. 210(C), pages 613-622.
    7. Lv, J. & Li, Y.P. & Shan, B.G. & Jin, S.W. & Suo, C., 2018. "Planning energy-water nexus system under multiple uncertainties – A case study of Hebei province," Applied Energy, Elsevier, vol. 229(C), pages 389-403.
    8. Guohua He & Yong Zhao & Jianhua Wang & Haihong Li & Yongnan Zhu & Shang Jiang, 2019. "The water–energy nexus: energy use for water supply in China," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 35(4), pages 587-604, July.
    9. Mounir, Adil & Mascaro, Giuseppe & White, Dave D., 2019. "A metropolitan scale analysis of the impacts of future electricity mix alternatives on the water-energy nexus," Applied Energy, Elsevier, vol. 256(C).
    10. Qin, Ying & Curmi, Elizabeth & Kopec, Grant M. & Allwood, Julian M. & Richards, Keith S., 2015. "China's energy-water nexus – assessment of the energy sector's compliance with the “3 Red Lines” industrial water policy," Energy Policy, Elsevier, vol. 82(C), pages 131-143.
    11. Gjorgiev, Blaže & Sansavini, Giovanni, 2018. "Electrical power generation under policy constrained water-energy nexus," Applied Energy, Elsevier, vol. 210(C), pages 568-579.
    12. Nie, S. & Huang, Z.C. & Huang, G.H. & Yu, L. & Liu, J., 2018. "Optimization of electric power systems with cost minimization and environmental-impact mitigation under multiple uncertainties," Applied Energy, Elsevier, vol. 221(C), pages 249-267.
    13. Fan, Jing-Li & Kong, Ling-Si & Zhang, Xian, 2018. "Synergetic effects of water and climate policy on energy-water nexus in China: A computable general equilibrium analysis," Energy Policy, Elsevier, vol. 123(C), pages 308-317.
    14. Zhai, Mengyu & Huang, Guohe & Liu, Lirong & Zheng, Boyue & Guan, Yuru, 2020. "Inter-regional carbon flows embodied in electricity transmission: network simulation for energy-carbon nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    15. Chu, Chu & Ritter, William & Sun, Xiaohui, 2019. "Spatial variances of water-energy nexus in China and its implications for provincial resource interdependence," Energy Policy, Elsevier, vol. 125(C), pages 487-502.
    16. Gude, Veera Gnaneswar, 2015. "Energy and water autarky of wastewater treatment and power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 52-68.
    17. Chai, Li & Liao, Xiawei & Yang, Liu & Yan, Xianglin, 2018. "Assessing life cycle water use and pollution of coal-fired power generation in China using input-output analysis," Applied Energy, Elsevier, vol. 231(C), pages 951-958.
    18. Shang, Yizi & Lu, Shibao & Li, Xiaofei & Hei, Pengfei & Lei, Xiaohui & Gong, Jiaguo & Liu, Jiahong & Zhai, Jiaqi & Wang, Hao, 2017. "Balancing development of major coal bases with available water resources in China through 2020," Applied Energy, Elsevier, vol. 194(C), pages 735-750.
    19. Sun, Li & Pan, Bolin & Gu, Alun & Lu, Hui & Wang, Wei, 2018. "Energy–water nexus analysis in the Beijing–Tianjin–Hebei region: Case of electricity sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 27-34.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, M.S. & Huang, G.H. & Chen, J.P. & Li, Y.P., 2022. "Energy-water-carbon nexus system planning: A case study of Yangtze River Delta urban agglomeration, China," Applied Energy, Elsevier, vol. 308(C).
    2. Xiao Li & Yu Zhang & Jing Liu & Zuomeng Sun, 2023. "Towards Sustainable Energy–Water–Environment Nexus System Considering the Interactions between Climatic, Social and Economic Factors: A Case Study of Fujian, China," Sustainability, MDPI, vol. 15(12), pages 1-22, June.
    3. Edmonds, Lawryn & Derby, Melanie & Hill, Mary & Wu, Hongyu, 2021. "Coordinated operation of water and electricity distribution networks with variable renewable energy and distribution locational marginal pricing," Renewable Energy, Elsevier, vol. 177(C), pages 1438-1450.
    4. Ana Luiza Fontenelle & Erik Nilsson & Ieda Geriberto Hidalgo & Cintia B. Uvo & Drielli Peyerl, 2022. "Temporal Understanding of the Water–Energy Nexus: A Literature Review," Energies, MDPI, vol. 15(8), pages 1-21, April.
    5. Mohammad Tamim Kashifi & Fahad Saleh Mohammed Al-Ismail & Shakhawat Chowdhury & Hassan M. Baaqeel & Md Shafiullah & Surya Prakash Tiwari & Syed Masiur Rahman, 2022. "Water-Energy-Food Nexus Approach to Assess Crop Trading in Saudi Arabia," Sustainability, MDPI, vol. 14(6), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
    2. Hao Li & Yuhuan Zhao & Jiang Lin, 2020. "A review of the energy–carbon–water nexus: Concepts, research focuses, mechanisms, and methodologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(1), January.
    3. Lv, J. & Li, Y.P. & Shan, B.G. & Jin, S.W. & Suo, C., 2018. "Planning energy-water nexus system under multiple uncertainties – A case study of Hebei province," Applied Energy, Elsevier, vol. 229(C), pages 389-403.
    4. Sharifzadeh, Mahdi & Hien, Raymond Khoo Teck & Shah, Nilay, 2019. "China’s roadmap to low-carbon electricity and water: Disentangling greenhouse gas (GHG) emissions from electricity-water nexus via renewable wind and solar power generation, and carbon capture and sto," Applied Energy, Elsevier, vol. 235(C), pages 31-42.
    5. Suo, C. & Li, Y.P. & Mei, H. & Lv, J. & Sun, J. & Nie, S., 2021. "Towards sustainability for China's energy system through developing an energy-climate-water nexus model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2019. "Water use of electricity technologies: A global meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    7. Zhou, Nan & Zhang, Jingjing & Khanna, Nina & Fridley, David & Jiang, Shan & Liu, Xu, 2019. "Intertwined impacts of water, energy development, and carbon emissions in China," Applied Energy, Elsevier, vol. 238(C), pages 78-91.
    8. Zhou, Yuanchun & Ma, Mengdie & Gao, Peiqi & Xu, Qiming & Bi, Jun & Naren, Tuya, 2019. "Managing water resources from the energy - water nexus perspective under a changing climate: A case study of Jiangsu province, China," Energy Policy, Elsevier, vol. 126(C), pages 380-390.
    9. Ana Luiza Fontenelle & Erik Nilsson & Ieda Geriberto Hidalgo & Cintia B. Uvo & Drielli Peyerl, 2022. "Temporal Understanding of the Water–Energy Nexus: A Literature Review," Energies, MDPI, vol. 15(8), pages 1-21, April.
    10. Wu, X.D. & Ji, Xi & Li, Chaohui & Xia, X.H. & Chen, G.Q., 2019. "Water footprint of thermal power in China: Implications from the high amount of industrial water use by plant infrastructure of coal-fired generation system," Energy Policy, Elsevier, vol. 132(C), pages 452-461.
    11. Xiao, Zhengyan & Yao, Meiqin & Tang, Xiaotong & Sun, Luxi, 2019. "Identifying critical supply chains: An input-output analysis for Food-Energy-Water Nexus in China," Ecological Modelling, Elsevier, vol. 392(C), pages 31-37.
    12. Logan, Lauren H. & Gupta, Rohini S. & Ando, Amy & Suski, Cory & Stillwell, Ashlynn S., 2021. "Quantifying tradeoffs between electricity generation and fish populations via population habitat duration curves," Ecological Modelling, Elsevier, vol. 440(C).
    13. Liu, Yitong & Chen, Bin & Wei, Wendong & Shao, Ling & Li, Zhi & Jiang, Weizhong & Chen, Guoqian, 2020. "Global water use associated with energy supply, demand and international trade of China," Applied Energy, Elsevier, vol. 257(C).
    14. Gao, Xuerui & Zhao, Yong & Lu, Shibao & Chen, Qianyun & An, Tingli & Han, Xinxueqi & Zhuo, La, 2019. "Impact of coal power production on sustainable water resources management in the coal-fired power energy bases of Northern China," Applied Energy, Elsevier, vol. 250(C), pages 821-833.
    15. Liu, Gengyuan & Hu, Junmei & Chen, Caocao & Xu, Linyu & Wang, Ning & Meng, Fanxin & Giannetti, Biagio F. & Agostinho, Feni & Almeida, Cecília M.V. B. & Casazza, Marco, 2021. "LEAP-WEAP analysis of urban energy-water dynamic nexus in Beijing (China)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    16. Feng, Cuiyang & Tang, Xu & Jin, Yi & Guo, Yuhua & Zhang, Xiaochuan, 2019. "Regional energy-water nexus based on structural path betweenness: A case study of Shanxi Province, China," Energy Policy, Elsevier, vol. 127(C), pages 102-112.
    17. Chen, Pi-Cheng & Alvarado, Valeria & Hsu, Shu-Chien, 2018. "Water energy nexus in city and hinterlands: Multi-regional physical input-output analysis for Hong Kong and South China," Applied Energy, Elsevier, vol. 225(C), pages 986-997.
    18. Li, Nan & Chen, Wenying, 2019. "Energy-water nexus in China's energy bases: From the Paris agreement to the Well Below 2 Degrees target," Energy, Elsevier, vol. 166(C), pages 277-286.
    19. Cui, Qi & He, Ling & Han, Guoyi & Chen, Hao & Cao, Juanjuan, 2020. "Review on climate and water resource implications of reducing renewable power curtailment in China: A nexus perspective," Applied Energy, Elsevier, vol. 267(C).
    20. Elena Helerea & Marius D. Calin & Cristian Musuroi, 2023. "Water Energy Nexus and Energy Transition—A Review," Energies, MDPI, vol. 16(4), pages 1-31, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:134:y:2020:i:c:s1364032120306092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.