IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v256y2019ics0306261919315570.html
   My bibliography  Save this article

A metropolitan scale analysis of the impacts of future electricity mix alternatives on the water-energy nexus

Author

Listed:
  • Mounir, Adil
  • Mascaro, Giuseppe
  • White, Dave D.

Abstract

Current population and climate trends are increasing the need to adopt holistic approaches for managing water and energy systems, especially in water-limited regions like the Southwestern U.S. In this study, we quantify the implications of future energy mix alternatives on the water-energy nexus in the Phoenix, Arizona metropolitan region using the Long-range Energy Alternatives Planning (LEAP) platform. We first show that LEAP is able to simulate historical observations of energy generation and consumption from 2001 to 2018. We then simulate future electricity generation through 2060 under the same demand projections and different energy mix solutions. Results of our simulations are as follows. (i) Water heating accounts for 71% of the total water-related uses and its energy needs are projected to double in 2060, due to population growth; the energy required to treat and move water is instead expected to decrease by 9%, mainly because of declining agricultural water demands. (ii) Energy mix solutions that transition faster to renewable sources are more sustainable than a business as usual scenario that relies more on fossil fuels, because renewable technologies require less water for electricity generation (−35%) and reduce CO2 emissions (−57%). (iii) The aggressive transition to renewable energy is projected to have higher structural costs than the business as usual scenario, but comparable total expenses because of the lower operational cost of renewable technologies. This work complements and expands previous regional studies focused on the Southwestern U.S. and supports current efforts of local stakeholder engagement initiated by the authors.

Suggested Citation

  • Mounir, Adil & Mascaro, Giuseppe & White, Dave D., 2019. "A metropolitan scale analysis of the impacts of future electricity mix alternatives on the water-energy nexus," Applied Energy, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:appene:v:256:y:2019:i:c:s0306261919315570
    DOI: 10.1016/j.apenergy.2019.113870
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919315570
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113870?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Handayani, Kamia & Krozer, Yoram & Filatova, Tatiana, 2019. "From fossil fuels to renewables: An analysis of long-term scenarios considering technological learning," Energy Policy, Elsevier, vol. 127(C), pages 134-146.
    2. Hong, Sungjun & Chung, Yanghon & Kim, Jongwook & Chun, Dongphil, 2016. "Analysis on the level of contribution to the national greenhouse gas reduction target in Korean transportation sector using LEAP model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 549-559.
    3. Nadia S. Ouedraogo, 2017. "Modeling sustainable long-term electricity supply-demand in Africa," WIDER Working Paper Series wp-2017-23, World Institute for Development Economic Research (UNU-WIDER).
    4. Kamerschen, David R. & Porter, David V., 2004. "The demand for residential, industrial and total electricity, 1973-1998," Energy Economics, Elsevier, vol. 26(1), pages 87-100, January.
    5. Plappally, A.K. & Lienhard V, J.H., 2012. "Energy requirements for water production, treatment, end use, reclamation, and disposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4818-4848.
    6. Larry Dale & Nihan Karali & Dev Millstein & Mike Carnall & Sebastian Vicuña & Nicolas Borchers & Eduardo Bustos & Joe O’Hagan & David Purkey & Charles Heaps & Jack Sieber & William Collins & Michael S, 2015. "An integrated assessment of water-energy and climate change in sacramento, california: how strong is the nexus?," Climatic Change, Springer, vol. 132(2), pages 223-235, September.
    7. Scott, Christopher A. & Pierce, Suzanne A. & Pasqualetti, Martin J. & Jones, Alice L. & Montz, Burrell E. & Hoover, Joseph H., 2011. "Policy and institutional dimensions of the water-energy nexus," Energy Policy, Elsevier, vol. 39(10), pages 6622-6630, October.
    8. Timothy Lant & Clea Senneville, 2010. "Credibility, salience, and legitimacy of boundary objects: water managers' assessment of a simulation model in an immersive decision theater," Science and Public Policy, Oxford University Press, vol. 37(3), pages 219-232, April.
    9. Siddiqi, Afreen & Anadon, Laura Diaz, 2011. "The water-energy nexus in Middle East and North Africa," Energy Policy, Elsevier, vol. 39(8), pages 4529-4540, August.
    10. Sampson, D.A. & Quay, R. & White, D.D., 2016. "Anticipatory modeling for water supply sustainability in Phoenix, Arizona," Environmental Science & Policy, Elsevier, vol. 55(P1), pages 36-46.
    11. Gjorgiev, Blaže & Sansavini, Giovanni, 2018. "Electrical power generation under policy constrained water-energy nexus," Applied Energy, Elsevier, vol. 210(C), pages 568-579.
    12. Rio Carrillo, Anna Mercè & Frei, Christoph, 2009. "Water: A key resource in energy production," Energy Policy, Elsevier, vol. 37(11), pages 4303-4312, November.
    13. Acker, Thomas L. & Williams, Susan K. & Duque, Earl P.N. & Brummels, Grant & Buechler, Jason, 2007. "Wind resource assessment in the state of Arizona: Inventory, capacity factor, and cost," Renewable Energy, Elsevier, vol. 32(9), pages 1453-1466.
    14. Ouedraogo, Nadia S., 2017. "Modeling sustainable long-term electricity supply-demand in Africa," Applied Energy, Elsevier, vol. 190(C), pages 1047-1067.
    15. Welsch, M. & Hermann, S. & Howells, M. & Rogner, H.H. & Young, C. & Ramma, I. & Bazilian, M. & Fischer, G. & Alfstad, T. & Gielen, D. & Le Blanc, D. & Röhrl, A. & Steduto, P. & Müller, A., 2014. "Adding value with CLEWS – Modelling the energy system and its interdependencies for Mauritius," Applied Energy, Elsevier, vol. 113(C), pages 1434-1445.
    16. Aliyu, Abubakar Sadiq & Ramli, Ahmad Termizi & Saleh, Muneer Aziz, 2013. "Nigeria electricity crisis: Power generation capacity expansion and environmental ramifications," Energy, Elsevier, vol. 61(C), pages 354-367.
    17. Hyerim Yoon & David Sauri & Antonio M. Rico Amorós, 2018. "Shifting Scarcities? The Energy Intensity of Water Supply Alternatives in the Mass Tourist Resort of Benidorm, Spain," Sustainability, MDPI, vol. 10(3), pages 1-17, March.
    18. Nadia S. Ouedraogo, 2017. "Modeling sustainable long-term electricity supply–demand in Africa," WIDER Working Paper Series 023, World Institute for Development Economic Research (UNU-WIDER).
    19. Dave D. White & J. Leah Jones & Ross Maciejewski & Rimjhim Aggarwal & Giuseppe Mascaro, 2017. "Stakeholder Analysis for the Food-Energy-Water Nexus in Phoenix, Arizona: Implications for Nexus Governance," Sustainability, MDPI, vol. 9(12), pages 1-21, November.
    20. Zhou, Yuanchun & Ma, Mengdie & Gao, Peiqi & Xu, Qiming & Bi, Jun & Naren, Tuya, 2019. "Managing water resources from the energy - water nexus perspective under a changing climate: A case study of Jiangsu province, China," Energy Policy, Elsevier, vol. 126(C), pages 380-390.
    21. Dave D. White & Amber Y. Wutich & Kelli L. Larson & Tim Lant, 2015. "Water management decision makers' evaluations of uncertainty in a decision support system: the case of WaterSim in the Decision Theater," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 58(4), pages 616-630, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Optimisation modelling tools and solving techniques for integrated precinct-scale energy–water system planning," Applied Energy, Elsevier, vol. 318(C).
    2. Suo, C. & Li, Y.P. & Mei, H. & Lv, J. & Sun, J. & Nie, S., 2021. "Towards sustainability for China's energy system through developing an energy-climate-water nexus model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Arriet, Andrea & Matis, Timothy I. & Feijoo, Felipe, 2023. "Water taxation strategies for the natural gas sector in North America: Facing a rising water crisis," Energy, Elsevier, vol. 279(C).
    4. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Challenges, opportunities, and strategies for undertaking integrated precinct-scale energy–water system planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Elena Helerea & Marius D. Calin & Cristian Musuroi, 2023. "Water Energy Nexus and Energy Transition—A Review," Energies, MDPI, vol. 16(4), pages 1-31, February.
    6. Lv, J. & Li, Y.P. & Huang, G.H. & Suo, C. & Mei, H. & Li, Y., 2020. "Quantifying the impact of water availability on China's energy system under uncertainties: A perceptive of energy-water nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    7. Kung, Chih-Chun & Wu, Tao, 2021. "Influence of water allocation on bioenergy production under climate change: A stochastic mathematical programming approach," Energy, Elsevier, vol. 231(C).
    8. Ana Luiza Fontenelle & Erik Nilsson & Ieda Geriberto Hidalgo & Cintia B. Uvo & Drielli Peyerl, 2022. "Temporal Understanding of the Water–Energy Nexus: A Literature Review," Energies, MDPI, vol. 15(8), pages 1-21, April.
    9. Icaro Yuri Pereira Dias & Lira Luz Benites Lazaro & Virginia Grace Barros, 2023. "Water–Energy–Food Security Nexus—Estimating Future Water Demand Scenarios Based on Nexus Thinking: The Watershed as a Territory," Sustainability, MDPI, vol. 15(9), pages 1-21, April.
    10. J. Leah Jones & Dave D. White, 2021. "A social network analysis of collaborative governance for the food-energy-water nexus in Phoenix, AZ, USA," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 11(4), pages 671-681, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Zarrar & Linares, Pedro & García-González, Javier, 2017. "Integrating water and energy models for policy driven applications. A review of contemporary work and recommendations for future developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1123-1138.
    2. Trotter, Philipp A. & Maconachie, Roy & McManus, Marcelle C., 2018. "Solar energy's potential to mitigate political risks: The case of an optimised Africa-wide network," Energy Policy, Elsevier, vol. 117(C), pages 108-126.
    3. Lee, Mengshan & Keller, Arturo A. & Chiang, Pen-Chi & Den, Walter & Wang, Hongtao & Hou, Chia-Hung & Wu, Jiang & Wang, Xin & Yan, Jinyue, 2017. "Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks," Applied Energy, Elsevier, vol. 205(C), pages 589-601.
    4. Ayuketah, Yvan & Gyamfi, Samuel & Diawuo, Felix Amankwah & Dagoumas, Athanasios S., 2023. "A techno-economic and environmental assessment of a low-carbon power generation system in Cameroon," Energy Policy, Elsevier, vol. 179(C).
    5. Shahid, Muhammad & Ullah, Kafait & Imran, Kashif & Masroor, Neha & Sajid, Muhammad Bilal, 2022. "Economic and environmental analysis of green transport penetration in Pakistan," Energy Policy, Elsevier, vol. 166(C).
    6. Li, Xian & Yang, Lili & Zheng, Heran & Shan, Yuli & Zhang, Zongyong & Song, Malin & Cai, Bofeng & Guan, Dabo, 2019. "City-level water-energy nexus in Beijing-Tianjin-Hebei region," Applied Energy, Elsevier, vol. 235(C), pages 827-834.
    7. Dioha, Michael O. & Kumar, Atul, 2020. "Exploring the energy system impacts of Nigeria's Nationally Determined Contributions and low-carbon transition to mid-century," Energy Policy, Elsevier, vol. 144(C).
    8. Nieves, J.A. & Aristizábal, A.J. & Dyner, I. & Báez, O. & Ospina, D.H., 2019. "Energy demand and greenhouse gas emissions analysis in Colombia: A LEAP model application," Energy, Elsevier, vol. 169(C), pages 380-397.
    9. Santika, Wayan G. & Anisuzzaman, M. & Simsek, Yeliz & Bahri, Parisa A. & Shafiullah, G.M. & Urmee, Tania, 2020. "Implications of the Sustainable Development Goals on national energy demand: The case of Indonesia," Energy, Elsevier, vol. 196(C).
    10. Xinyu Han & Rongrong Li, 2019. "Comparison of Forecasting Energy Consumption in East Africa Using the MGM, NMGM, MGM-ARIMA, and NMGM-ARIMA Model," Energies, MDPI, vol. 12(17), pages 1-24, August.
    11. Yang, Jin & Chen, Bin, 2016. "Energy–water nexus of wind power generation systems," Applied Energy, Elsevier, vol. 169(C), pages 1-13.
    12. Okadera, Tomohiro & Geng, Yong & Fujita, Tsuyoshi & Dong, Huijuan & Liu, Zhu & Yoshida, Noboru & Kanazawa, Takaaki, 2015. "Evaluating the water footprint of the energy supply of Liaoning Province, China: A regional input–output analysis approach," Energy Policy, Elsevier, vol. 78(C), pages 148-157.
    13. Trotter, Philipp A., 2022. "The slow transition to solar, wind and other non-hydro renewables in Africa – Responding to and building on a critique by Kincer, Moss and Thurber (2021)," World Development Perspectives, Elsevier, vol. 25(C).
    14. Nyiko Worship Hlongwane & Olebogeng David Daw, 2023. "Electricity Consumption and Population Growth in South Africa: A Panel Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 13(3), pages 374-383, May.
    15. Mina Masoomi & Mostafa Panahi & Reza Samadi, 2022. "Demand side management for electricity in Iran: cost and emission analysis using LEAP modeling framework," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5667-5693, April.
    16. Riva, Fabio & Gardumi, Francesco & Tognollo, Annalisa & Colombo, Emanuela, 2019. "Soft-linking energy demand and optimisation models for local long-term electricity planning: An application to rural India," Energy, Elsevier, vol. 166(C), pages 32-46.
    17. Bissiri, M. & Moura, P. & Figueiredo, N.C. & Silva, P.P., 2020. "Towards a renewables-based future for West African States: A review of power systems planning approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    18. Hlongwane, Nyiko Worship & Daw, Olebogeng David, 2022. "Electricity consumption and population growth in South Africa: A panel approach," MPRA Paper 113828, University Library of Munich, Germany.
    19. Padi, Richard Kingsley & Chimphango, Annie, 2021. "Assessing the potential of integrating cassava residues-based bioenergy into national energy mix using long-range Energy Alternatives Planning systems approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    20. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:256:y:2019:i:c:s0306261919315570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.