IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v166y2022ics0301421522002658.html
   My bibliography  Save this article

Economic and environmental analysis of green transport penetration in Pakistan

Author

Listed:
  • Shahid, Muhammad
  • Ullah, Kafait
  • Imran, Kashif
  • Masroor, Neha
  • Sajid, Muhammad Bilal

Abstract

The transport sector is going through a transition from a traditional to a sustainable system. Advanced countries have evaluated the costs and benefits of such transition, however, developing countries like Pakistan have rarely looked into evaluating such transition rigorously. This paper uses the transport sector of Pakistan as a case study and provides an economic evaluation of different scenarios for sustainable transportation in the region. The study has used the Long-range Energy Alternative Planning (LEAP) framework to evaluate the environmental and social costs of three scenarios, Business as Usual Scenario (BAUS), Efficient Combustion Scenario (ECS), and Hybrid Vehicle Scenario (HVS). It concluded that by 2040, the HVS and ECS will reduce carbon dioxide emissions by 303.7 and 213.3 million metric tons respectively compared to BAUS. These savings in terms of social cost will be US$ 10.1 billion in HVS and US$ 7.2 billion in ECS as compared to BAUS. By the year 2040, oil demand in the transportation system will also be possible to contain at the 2026 level. This research is anticipated to help discover the best policy decisions for increasing the share of green fuels in the transport sector of Pakistan.

Suggested Citation

  • Shahid, Muhammad & Ullah, Kafait & Imran, Kashif & Masroor, Neha & Sajid, Muhammad Bilal, 2022. "Economic and environmental analysis of green transport penetration in Pakistan," Energy Policy, Elsevier, vol. 166(C).
  • Handle: RePEc:eee:enepol:v:166:y:2022:i:c:s0301421522002658
    DOI: 10.1016/j.enpol.2022.113040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421522002658
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2022.113040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ullah, Kafait & Hamid, Salman & Mirza, Faisal Mehmood & Shakoor, Usman, 2018. "Prioritizing the gaseous alternatives for the road transport sector of Pakistan: A multi criteria decision making analysis," Energy, Elsevier, vol. 165(PB), pages 1072-1084.
    2. Jaffery, Syed Husain Imran & Khan, Mushtaq & Ali, Liaqat & Khan, Hassan Abbas & Mufti, Riaz Ahmad & Khan, Ashfaq & Khan, Nawar & Jaffery, Syed M., 2014. "The potential of solar powered transportation and the case for solar powered railway in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 270-276.
    3. Ouedraogo, Nadia S., 2017. "Modeling sustainable long-term electricity supply-demand in Africa," Applied Energy, Elsevier, vol. 190(C), pages 1047-1067.
    4. Sadri, A. & Ardehali, M.M. & Amirnekooei, K., 2014. "General procedure for long-term energy-environmental planning for transportation sector of developing countries with limited data based on LEAP (long-range energy alternative planning) and EnergyPLAN," Energy, Elsevier, vol. 77(C), pages 831-843.
    5. Castro Verdezoto, Pedro L. & Vidoza, Jorge A. & Gallo, Waldyr L.R., 2019. "Analysis and projection of energy consumption in Ecuador: Energy efficiency policies in the transportation sector," Energy Policy, Elsevier, vol. 134(C).
    6. Brand, Christian, 2016. "Beyond ‘Dieselgate’: Implications of unaccounted and future air pollutant emissions and energy use for cars in the United Kingdom," Energy Policy, Elsevier, vol. 97(C), pages 1-12.
    7. Hong, Sungjun & Chung, Yanghon & Kim, Jongwook & Chun, Dongphil, 2016. "Analysis on the level of contribution to the national greenhouse gas reduction target in Korean transportation sector using LEAP model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 549-559.
    8. Talbi, Besma, 2017. "CO2 emissions reduction in road transport sector in Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 232-238.
    9. Santos, Georgina, 2017. "Road transport and CO2 emissions: What are the challenges?," Transport Policy, Elsevier, vol. 59(C), pages 71-74.
    10. Sharma, Sunita & Ghoshal, Sib Krishna, 2015. "Hydrogen the future transportation fuel: From production to applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1151-1158.
    11. Nadia S. Ouedraogo, 2017. "Modeling sustainable long-term electricity supply-demand in Africa," WIDER Working Paper Series wp-2017-23, World Institute for Development Economic Research (UNU-WIDER).
    12. Sierzchula, William & Bakker, Sjoerd & Maat, Kees & van Wee, Bert, 2014. "The influence of financial incentives and other socio-economic factors on electric vehicle adoption," Energy Policy, Elsevier, vol. 68(C), pages 183-194.
    13. Nadia S. Ouedraogo, 2017. "Modeling sustainable long-term electricity supply–demand in Africa," WIDER Working Paper Series 023, World Institute for Development Economic Research (UNU-WIDER).
    14. Langbroek, Joram H.M. & Franklin, Joel P. & Susilo, Yusak O., 2016. "The effect of policy incentives on electric vehicle adoption," Energy Policy, Elsevier, vol. 94(C), pages 94-103.
    15. Fernández-Dacosta, Cora & Shen, Li & Schakel, Wouter & Ramirez, Andrea & Kramer, Gert Jan, 2019. "Potential and challenges of low-carbon energy options: Comparative assessment of alternative fuels for the transport sector," Applied Energy, Elsevier, vol. 236(C), pages 590-606.
    16. Shabbir, Rabia & Ahmad, Sheikh Saeed, 2010. "Monitoring urban transport air pollution and energy demand in Rawalpindi and Islamabad using leap model," Energy, Elsevier, vol. 35(5), pages 2323-2332.
    17. McPherson, Madeleine & Karney, Bryan, 2014. "Long-term scenario alternatives and their implications: LEAP model application of Panama׳s electricity sector," Energy Policy, Elsevier, vol. 68(C), pages 146-157.
    18. Lévay, Petra Zsuzsa & Drossinos, Yannis & Thiel, Christian, 2017. "The effect of fiscal incentives on market penetration of electric vehicles: A pairwise comparison of total cost of ownership," Energy Policy, Elsevier, vol. 105(C), pages 524-533.
    19. Jozef GNAP & Pavol VARJAN & Pavol ĎURANA & Mariusz KOSTRZEWSKI, 2019. "Research On Relationship Between Freight Transport And Transport Infrastructure In Selected European Countries," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 14(3), pages 63-74, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iftikhar Hussain & Haiyan Wang & Muhammad Safdar & Quoc Bang Ho & Tina D. Wemegah & Saima Noor, 2022. "Estimation of Shipping Emissions in Developing Country: A Case Study of Mohammad Bin Qasim Port, Pakistan," IJERPH, MDPI, vol. 19(19), pages 1-18, September.
    2. Yunpeng Sun & Qun Bao & Farhad Taghizadeh-Hesary, 2023. "Green finance, renewable energy development, and climate change: evidence from regions of China," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dioha, Michael O. & Kumar, Atul, 2020. "Exploring the energy system impacts of Nigeria's Nationally Determined Contributions and low-carbon transition to mid-century," Energy Policy, Elsevier, vol. 144(C).
    2. Mina Masoomi & Mostafa Panahi & Reza Samadi, 2022. "Demand side management for electricity in Iran: cost and emission analysis using LEAP modeling framework," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5667-5693, April.
    3. Bissiri, M. & Moura, P. & Figueiredo, N.C. & Silva, P.P., 2020. "Towards a renewables-based future for West African States: A review of power systems planning approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Mounir, Adil & Mascaro, Giuseppe & White, Dave D., 2019. "A metropolitan scale analysis of the impacts of future electricity mix alternatives on the water-energy nexus," Applied Energy, Elsevier, vol. 256(C).
    5. Santos, Georgina & Rembalski, Sebastian, 2021. "Do electric vehicles need subsidies in the UK?," Energy Policy, Elsevier, vol. 149(C).
    6. Vicente Sebastian Espinoza & Veronica Guayanlema & Javier Mart nez-G mez, 2018. "Energy Efficiency Plan Benefits in Ecuador: Long-range Energy Alternative Planning Model," International Journal of Energy Economics and Policy, Econjournals, vol. 8(4), pages 52-54.
    7. Bissiri, Mounirah & Moura, Pedro & Figueiredo, Nuno Carvalho & Pereira da Silva, Patrícia, 2020. "A geospatial approach towards defining cost-optimal electrification pathways in West Africa," Energy, Elsevier, vol. 200(C).
    8. Adeoye, Omotola & Spataru, Catalina, 2019. "Modelling and forecasting hourly electricity demand in West African countries," Applied Energy, Elsevier, vol. 242(C), pages 311-333.
    9. Nieves, J.A. & Aristizábal, A.J. & Dyner, I. & Báez, O. & Ospina, D.H., 2019. "Energy demand and greenhouse gas emissions analysis in Colombia: A LEAP model application," Energy, Elsevier, vol. 169(C), pages 380-397.
    10. Santika, Wayan G. & Anisuzzaman, M. & Simsek, Yeliz & Bahri, Parisa A. & Shafiullah, G.M. & Urmee, Tania, 2020. "Implications of the Sustainable Development Goals on national energy demand: The case of Indonesia," Energy, Elsevier, vol. 196(C).
    11. Saiful Hasan & Terje Andreas Mathisen, 2020. "Policy measures for electric vehicle adoption. A review of evidence from Norway and China," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 0(1), pages 25-46.
    12. Dai, Ziyi & Liu, Haobing & Rodgers, Michael O. & Guensler, Randall, 2022. "Electric vehicle market potential and associated energy and emissions reduction benefits," Applied Energy, Elsevier, vol. 322(C).
    13. Xinyu Han & Rongrong Li, 2019. "Comparison of Forecasting Energy Consumption in East Africa Using the MGM, NMGM, MGM-ARIMA, and NMGM-ARIMA Model," Energies, MDPI, vol. 12(17), pages 1-24, August.
    14. Schwab, Julia & Sölch, Christian & Zöttl, Gregor, 2022. "Electric Vehicle Cost in 2035: The impact of market penetration and charging strategies," Energy Economics, Elsevier, vol. 114(C).
    15. Trotter, Philipp A., 2022. "The slow transition to solar, wind and other non-hydro renewables in Africa – Responding to and building on a critique by Kincer, Moss and Thurber (2021)," World Development Perspectives, Elsevier, vol. 25(C).
    16. Nyiko Worship Hlongwane & Olebogeng David Daw, 2023. "Electricity Consumption and Population Growth in South Africa: A Panel Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 13(3), pages 374-383, May.
    17. Riva, Fabio & Gardumi, Francesco & Tognollo, Annalisa & Colombo, Emanuela, 2019. "Soft-linking energy demand and optimisation models for local long-term electricity planning: An application to rural India," Energy, Elsevier, vol. 166(C), pages 32-46.
    18. Hlongwane, Nyiko Worship & Daw, Olebogeng David, 2022. "Electricity consumption and population growth in South Africa: A panel approach," MPRA Paper 113828, University Library of Munich, Germany.
    19. Padi, Richard Kingsley & Chimphango, Annie, 2021. "Assessing the potential of integrating cassava residues-based bioenergy into national energy mix using long-range Energy Alternatives Planning systems approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    20. Trotter, Philipp A. & Maconachie, Roy & McManus, Marcelle C., 2018. "Solar energy's potential to mitigate political risks: The case of an optimised Africa-wide network," Energy Policy, Elsevier, vol. 117(C), pages 108-126.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:166:y:2022:i:c:s0301421522002658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.