IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v166y2019icp32-46.html
   My bibliography  Save this article

Soft-linking energy demand and optimisation models for local long-term electricity planning: An application to rural India

Author

Listed:
  • Riva, Fabio
  • Gardumi, Francesco
  • Tognollo, Annalisa
  • Colombo, Emanuela

Abstract

Rural electricity plans are usually designed by relying on top-down rough and aggregated estimations of the electricity demand, which may fail to capture the real dynamics of local contexts. This study aims at soft-linking a bottom-up approach for short- and long-term forecasts of load profiles with an energy optimisation model in a more comprehensive rural energy planning procedure. The procedure is applied to a small Indian community, and it is based on three blocks: (i) a bottom-up model to project households' electrical appliances, which adopts socio-economic indicators to make long-term projections; (ii) a stochastic load profile generator, which employs correlations and users’ habits for assessing the coincidence and load factors; (ii) an energy optimisation model based on OSeMOSYS to find the economic optimum. The simulations show that demand models based on socio-economic indicators lead to more structured and less arbitrary scenarios. The soft-link with the energy optimisation model confirms that when accounting for short- and long-term variabilities of electricity demand together, the optimal capacities and costs can vary up to 144% and 50% respectively. Integrating optimisation tools to bottom-up models based on socio-economic indicators for forecasting electricity demand is therefore pivotal to set more reliable investments plans in rural electrification.

Suggested Citation

  • Riva, Fabio & Gardumi, Francesco & Tognollo, Annalisa & Colombo, Emanuela, 2019. "Soft-linking energy demand and optimisation models for local long-term electricity planning: An application to rural India," Energy, Elsevier, vol. 166(C), pages 32-46.
  • Handle: RePEc:eee:energy:v:166:y:2019:i:c:p:32-46
    DOI: 10.1016/j.energy.2018.10.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218320577
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.10.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. World Bank Group, 2016. "World Bank Group/World Bank Corporate Scorecards, April 2016," World Bank Publications - Books, The World Bank Group, number 24235, December.
    2. Ouedraogo, Nadia S., 2017. "Modeling sustainable long-term electricity supply-demand in Africa," Applied Energy, Elsevier, vol. 190(C), pages 1047-1067.
    3. Orosz, Matthew & Altes-Buch, Queralt & Mueller, Amy & Lemort, Vincent, 2018. "Experimental validation of an electrical and thermal energy demand model for rapid assessment of rural health centers in sub-Saharan Africa," Applied Energy, Elsevier, vol. 218(C), pages 382-390.
    4. Paudel, Uttam & Khatri, Umesh & Pant, Krishna Prasad, 2018. "Understanding the determinants of household cooking fuel choice in Afghanistan: A multinomial logit estimation," Energy, Elsevier, vol. 156(C), pages 55-62.
    5. Rajbongshi, Rumi & Borgohain, Devashree & Mahapatra, Sadhan, 2017. "Optimization of PV-biomass-diesel and grid base hybrid energy systems for rural electrification by using HOMER," Energy, Elsevier, vol. 126(C), pages 461-474.
    6. Filippini, Massimo & Pachauri, Shonali, 2004. "Elasticities of electricity demand in urban Indian households," Energy Policy, Elsevier, vol. 32(3), pages 429-436, February.
    7. Arranz-Piera, Pol & Kemausuor, Francis & Darkwah, Lawrence & Edjekumhene, Ishmael & Cortés, Joan & Velo, Enrique, 2018. "Mini-grid electricity service based on local agricultural residues: Feasibility study in rural Ghana," Energy, Elsevier, vol. 153(C), pages 443-454.
    8. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    9. Fuso Nerini, Francesco & Dargaville, Roger & Howells, Mark & Bazilian, Morgan, 2015. "Estimating the cost of energy access: The case of the village of Suro Craic in Timor Leste," Energy, Elsevier, vol. 79(C), pages 385-397.
    10. Hartvigsson, Elias & Stadler, Michael & Cardoso, Gonçalo, 2018. "Rural electrification and capacity expansion with an integrated modeling approach," Renewable Energy, Elsevier, vol. 115(C), pages 509-520.
    11. Mustonen, S.M., 2010. "Rural energy survey and scenario analysis of village energy consumption: A case study in Lao People's Democratic Republic," Energy Policy, Elsevier, vol. 38(2), pages 1040-1048, February.
    12. Alam, Majbaul & Bhattacharyya, Subhes, 2017. "Are the off-grid customers ready to pay for electricity from the decentralized renewable hybrid mini-grids? A study of willingness to pay in rural Bangladesh," Energy, Elsevier, vol. 139(C), pages 433-446.
    13. Howells, Mark & Rogner, Holger & Strachan, Neil & Heaps, Charles & Huntington, Hillard & Kypreos, Socrates & Hughes, Alison & Silveira, Semida & DeCarolis, Joe & Bazillian, Morgan & Roehrl, Alexander, 2011. "OSeMOSYS: The Open Source Energy Modeling System: An introduction to its ethos, structure and development," Energy Policy, Elsevier, vol. 39(10), pages 5850-5870, October.
    14. Ghaem Sigarchian, Sara & Paleta, Rita & Malmquist, Anders & Pina, André, 2015. "Feasibility study of using a biogas engine as backup in a decentralized hybrid (PV/wind/battery) power generation system – Case study Kenya," Energy, Elsevier, vol. 90(P2), pages 1830-1841.
    15. Kayode Olaniyan & Benjamin C. McLellan & Seiichi Ogata & Tetsuo Tezuka, 2018. "Estimating Residential Electricity Consumption in Nigeria to Support Energy Transitions," Sustainability, MDPI, vol. 10(5), pages 1-22, May.
    16. Ahmad, Jameel & Imran, Muhammad & Khalid, Abdullah & Iqbal, Waseem & Ashraf, Syed Rehan & Adnan, Muhammad & Ali, Syed Farooq & Khokhar, Khawar Siddique, 2018. "Techno economic analysis of a wind-photovoltaic-biomass hybrid renewable energy system for rural electrification: A case study of Kallar Kahar," Energy, Elsevier, vol. 148(C), pages 208-234.
    17. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    18. Nadia S. Ouedraogo, 2017. "Modeling sustainable long-term electricity supply-demand in Africa," WIDER Working Paper Series wp-2017-23, World Institute for Development Economic Research (UNU-WIDER).
    19. Bekele, Getachew & Tadesse, Getnet, 2012. "Feasibility study of small Hydro/PV/Wind hybrid system for off-grid rural electrification in Ethiopia," Applied Energy, Elsevier, vol. 97(C), pages 5-15.
    20. Prasad, Ravita D. & Bansal, R.C. & Raturi, Atul, 2014. "Multi-faceted energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 686-699.
    21. Howells, M. I. & Alfstad, T. & Victor, D. G. & Goldstein, G. & Remme, U., 2005. "A model of household energy services in a low-income rural African village," Energy Policy, Elsevier, vol. 33(14), pages 1833-1851, September.
    22. Nadia S. Ouedraogo, 2017. "Modeling sustainable long-term electricity supply–demand in Africa," WIDER Working Paper Series 023, World Institute for Development Economic Research (UNU-WIDER).
    23. Neves, Diana & Silva, Carlos A. & Connors, Stephen, 2014. "Design and implementation of hybrid renewable energy systems on micro-communities: A review on case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 935-946.
    24. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    25. Vishnupriyan, J. & Manoharan, P.S., 2017. "Demand side management approach to rural electrification of different climate zones in Indian state of Tamil Nadu," Energy, Elsevier, vol. 138(C), pages 799-815.
    26. Johnson, Nathan G. & Bryden, Kenneth M., 2012. "Energy supply and use in a rural West African village," Energy, Elsevier, vol. 43(1), pages 283-292.
    27. Louw, Kate & Conradie, Beatrice & Howells, Mark & Dekenah, Marcus, 2008. "Determinants of electricity demand for newly electrified low-income African households," Energy Policy, Elsevier, vol. 36(8), pages 2814-2820, August.
    28. Hong, Tao & Fan, Shu, 2016. "Probabilistic electric load forecasting: A tutorial review," International Journal of Forecasting, Elsevier, vol. 32(3), pages 914-938.
    29. Urban, F. & Benders, R.M.J. & Moll, H.C., 2007. "Modelling energy systems for developing countries," Energy Policy, Elsevier, vol. 35(6), pages 3473-3482, June.
    30. Phdungsilp, Aumnad, 2010. "Integrated energy and carbon modeling with a decision support system: Policy scenarios for low-carbon city development in Bangkok," Energy Policy, Elsevier, vol. 38(9), pages 4808-4817, September.
    31. Bhattacharyya, Subhes C. & Timilsina, Govinda R., 2010. "Modelling energy demand of developing countries: Are the specific features adequately captured?," Energy Policy, Elsevier, vol. 38(4), pages 1979-1990, April.
    32. Chauhan, Anurag & Saini, R.P., 2016. "Techno-economic optimization based approach for energy management of a stand-alone integrated renewable energy system for remote areas of India," Energy, Elsevier, vol. 94(C), pages 138-156.
    33. Tiwari, Piyush, 2000. "Architectural, Demographic, and Economic Causes of Electricity Consumption in Bombay," Journal of Policy Modeling, Elsevier, vol. 22(1), pages 81-98, January.
    34. van Ruijven, Bas J. & van Vuuren, Detlef P. & de Vries, Bert J.M. & Isaac, Morna & van der Sluijs, Jeroen P. & Lucas, Paul L. & Balachandra, P., 2011. "Model projections for household energy use in India," Energy Policy, Elsevier, vol. 39(12), pages 7747-7761.
    35. Dagnachew, Anteneh G. & Lucas, Paul L. & Hof, Andries F. & Gernaat, David E.H.J. & de Boer, Harmen-Sytze & van Vuuren, Detlef P., 2017. "The role of decentralized systems in providing universal electricity access in Sub-Saharan Africa – A model-based approach," Energy, Elsevier, vol. 139(C), pages 184-195.
    36. Daioglou, Vassilis & van Ruijven, Bas J. & van Vuuren, Detlef P., 2012. "Model projections for household energy use in developing countries," Energy, Elsevier, vol. 37(1), pages 601-615.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Roldán-Blay, Carlos & Escrivá-Escrivá, Guillermo & Roldán-Porta, Carlos, 2019. "Improving the benefits of demand response participation in facilities with distributed energy resources," Energy, Elsevier, vol. 169(C), pages 710-718.
    3. Chang, Miguel & Lund, Henrik & Thellufsen, Jakob Zinck & Østergaard, Poul Alberg, 2023. "Perspectives on purpose-driven coupling of energy system models," Energy, Elsevier, vol. 265(C).
    4. Petrelli, Marina & Fioriti, Davide & Berizzi, Alberto & Bovo, Cristian & Poli, Davide, 2021. "A novel multi-objective method with online Pareto pruning for multi-year optimization of rural microgrids," Applied Energy, Elsevier, vol. 299(C).
    5. Pavičević, Matija & Mangipinto, Andrea & Nijs, Wouter & Lombardi, Francesco & Kavvadias, Konstantinos & Jiménez Navarro, Juan Pablo & Colombo, Emanuela & Quoilin, Sylvain, 2020. "The potential of sector coupling in future European energy systems: Soft linking between the Dispa-SET and JRC-EU-TIMES models," Applied Energy, Elsevier, vol. 267(C).
    6. Abada, Ibrahim & Othmani, Mehdi & Tatry, Léa, 2021. "An innovative approach for the optimal sizing of mini-grids in rural areas integrating the demand, the supply, and the grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    7. Yazdanie, M. & Orehounig, K., 2021. "Advancing urban energy system planning and modeling approaches: Gaps and solutions in perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    8. Sahoo, Somadutta & van Stralen, Joost N.P. & Zuidema, Christian & Sijm, Jos & Yamu, Claudia & Faaij, André, 2022. "Regionalization of a national integrated energy system model: A case study of the northern Netherlands," Applied Energy, Elsevier, vol. 306(PB).
    9. Balderrama, Sergio & Lombardi, Francesco & Riva, Fabio & Canedo, Walter & Colombo, Emanuela & Quoilin, Sylvain, 2019. "A two-stage linear programming optimization framework for isolated hybrid microgrids in a rural context: The case study of the “El Espino” community," Energy, Elsevier, vol. 188(C).
    10. Bertheau, Paul, 2020. "Supplying not electrified islands with 100% renewable energy based micro grids: A geospatial and techno-economic analysis for the Philippines," Energy, Elsevier, vol. 202(C).
    11. Bertheau, Paul, 2020. "Assessing the impact of renewable energy on local development and the Sustainable Development Goals: Insights from a small Philippine island," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    12. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    13. Lorafe Lozano & Edward M. Querikiol & Evelyn B. Taboada, 2021. "The Viability of Providing 24-Hour Electricity Access to Off-Grid Island Communities in the Philippines," Energies, MDPI, vol. 14(20), pages 1-18, October.
    14. Lombardi, Francesco & Balderrama, Sergio & Quoilin, Sylvain & Colombo, Emanuela, 2019. "Generating high-resolution multi-energy load profiles for remote areas with an open-source stochastic model," Energy, Elsevier, vol. 177(C), pages 433-444.
    15. Lo Piano, S. & Smith, S.T., 2022. "Energy demand and its temporal flexibility: Approaches, criticalities and ways forward," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    16. Àlex Alonso-Travesset & Helena Martín & Sergio Coronas & Jordi de la Hoz, 2022. "Optimization Models under Uncertainty in Distributed Generation Systems: A Review," Energies, MDPI, vol. 15(5), pages 1-40, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nieves, J.A. & Aristizábal, A.J. & Dyner, I. & Báez, O. & Ospina, D.H., 2019. "Energy demand and greenhouse gas emissions analysis in Colombia: A LEAP model application," Energy, Elsevier, vol. 169(C), pages 380-397.
    2. Adeoye, Omotola & Spataru, Catalina, 2019. "Modelling and forecasting hourly electricity demand in West African countries," Applied Energy, Elsevier, vol. 242(C), pages 311-333.
    3. Nadia S. Ouedraogo, 2017. "Energy futures modelling for African countries: LEAP model application," WIDER Working Paper Series 056, World Institute for Development Economic Research (UNU-WIDER).
    4. Trotter, Philipp A. & McManus, Marcelle C. & Maconachie, Roy, 2017. "Electricity planning and implementation in sub-Saharan Africa: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1189-1209.
    5. Ouedraogo, Nadia S., 2017. "Africa energy future: Alternative scenarios and their implications for sustainable development strategies," Energy Policy, Elsevier, vol. 106(C), pages 457-471.
    6. MacCarty, Nordica A. & Bryden, Kenneth Mark, 2016. "An integrated systems model for energy services in rural developing communities," Energy, Elsevier, vol. 113(C), pages 536-557.
    7. Santika, Wayan G. & Anisuzzaman, M. & Simsek, Yeliz & Bahri, Parisa A. & Shafiullah, G.M. & Urmee, Tania, 2020. "Implications of the Sustainable Development Goals on national energy demand: The case of Indonesia," Energy, Elsevier, vol. 196(C).
    8. Nyiko Worship Hlongwane & Olebogeng David Daw, 2023. "Electricity Consumption and Population Growth in South Africa: A Panel Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 13(3), pages 374-383, May.
    9. Bissiri, M. & Moura, P. & Figueiredo, N.C. & Silva, P.P., 2020. "Towards a renewables-based future for West African States: A review of power systems planning approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Hlongwane, Nyiko Worship & Daw, Olebogeng David, 2022. "Electricity consumption and population growth in South Africa: A panel approach," MPRA Paper 113828, University Library of Munich, Germany.
    11. Agrawal, Shalu & Harish, S.P. & Mahajan, Aseem & Thomas, Daniel & Urpelainen, Johannes, 2020. "Influence of improved supply on household electricity consumption - Evidence from rural India," Energy, Elsevier, vol. 211(C).
    12. Prasad, Ravita D. & Raturi, Atul, 2019. "Low carbon alternatives and their implications for Fiji's electricity sector," Utilities Policy, Elsevier, vol. 56(C), pages 1-19.
    13. Waite, Michael & Cohen, Elliot & Torbey, Henri & Piccirilli, Michael & Tian, Yu & Modi, Vijay, 2017. "Global trends in urban electricity demands for cooling and heating," Energy, Elsevier, vol. 127(C), pages 786-802.
    14. Alipour, M. & Hafezi, R. & Amer, M. & Akhavan, A.N., 2017. "A new hybrid fuzzy cognitive map-based scenario planning approach for Iran's oil production pathways in the post–sanction period," Energy, Elsevier, vol. 135(C), pages 851-864.
    15. Come Zebra, Emília Inês & van der Windt, Henny J. & Nhumaio, Geraldo & Faaij, André P.C., 2021. "A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    16. Ramchandra Bhandari & Surendra Pandit, 2018. "Electricity as a Cooking Means in Nepal—A Modelling Tool Approach," Sustainability, MDPI, vol. 10(8), pages 1-17, August.
    17. Bruno Domenech & Laia Ferrer‐Martí & Rafael Pastor, 2019. "Comparison of various approaches to design wind‐PV rural electrification projects in remote areas of developing countries," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(3), May.
    18. Paul Bertheau & Ayobami Solomon Oyewo & Catherina Cader & Christian Breyer & Philipp Blechinger, 2017. "Visualizing National Electrification Scenarios for Sub-Saharan African Countries," Energies, MDPI, vol. 10(11), pages 1-20, November.
    19. Debnath, Ramit & Bardhan, Ronita & Sunikka-Blank, Minna, 2019. "How does slum rehabilitation influence appliance ownership? A structural model of non-income drivers," Energy Policy, Elsevier, vol. 132(C), pages 418-428.
    20. Blessing Ugwoke & Adedoyin Adeleke & Stefano P. Corgnati & Joshua M. Pearce & Pierluigi Leone, 2020. "Decentralized Renewable Hybrid Mini-Grids for Rural Communities: Culmination of the IREP Framework and Scale up to Urban Communities," Sustainability, MDPI, vol. 12(18), pages 1-26, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:166:y:2019:i:c:p:32-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.