IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v115y2018icp509-520.html
   My bibliography  Save this article

Rural electrification and capacity expansion with an integrated modeling approach

Author

Listed:
  • Hartvigsson, Elias
  • Stadler, Michael
  • Cardoso, Gonçalo

Abstract

In developing countries, mini-grids are seen as an important option to improve electrification rates in rural areas. In order to be successful, mini-grids face issues of operation and sizing of generation capacities. Current studies on the optimal sizing of mini-grids do not include capacity expansion feedbacks regarding the operator's or investor's long-term economic performance on growth in electricity usage, e.g. gap between demand and supply impacting the operator's income. Using a System Dynamics model, this paper compares the impact from two capacity expansion strategies on rural mini-grid operator's long-term economic performance. The two capacity expansion strategies are: a strategy with minimized costs and a strategy where only diesel power is allowed. Research shows that a cost-minimized capacity expansion strategy might not be the most beneficial solution for the operator's long term financial performance. Specifically, the high investment costs prohibit the implementation of the cost-minimized expansion strategy. In addition, the diesel-only expansion strategy suffers from high operational costs, which creates long-term challenges as the share of diesel increase. Therefore, the timeline of the investments and when to implement different strategies is important, creating a benefit for a System Dynamics approach.

Suggested Citation

  • Hartvigsson, Elias & Stadler, Michael & Cardoso, Gonçalo, 2018. "Rural electrification and capacity expansion with an integrated modeling approach," Renewable Energy, Elsevier, vol. 115(C), pages 509-520.
  • Handle: RePEc:eee:renene:v:115:y:2018:i:c:p:509-520
    DOI: 10.1016/j.renene.2017.08.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117308078
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.08.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bridge, Brandon A. & Adhikari, Dadhi & Fontenla, Matías, 2016. "Household-level effects of electricity on income," Energy Economics, Elsevier, vol. 58(C), pages 222-228.
    2. Chakravorty, Ujjayant & Pelli, Martino & Ural Marchand, Beyza, 2014. "Does the quality of electricity matter? Evidence from rural India," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 228-247.
    3. Sen, Rohit & Bhattacharyya, Subhes C., 2014. "Off-grid electricity generation with renewable energy technologies in India: An application of HOMER," Renewable Energy, Elsevier, vol. 62(C), pages 388-398.
    4. Lujano-Rojas, Juan M. & Dufo-López, Rodolfo & Atencio-Guerra, José L. & Rodrigues, Eduardo M.G. & Bernal-Agustín, José L. & Catalão, João P.S., 2016. "Operating conditions of lead-acid batteries in the optimization of hybrid energy systems and microgrids," Applied Energy, Elsevier, vol. 179(C), pages 590-600.
    5. Teufel, Felix & Miller, Michael & Genoese, Massimo & Fichtner, Wolf, 2013. "Review of System Dynamics models for electricity market simulations," Working Paper Series in Production and Energy 2, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    6. Manning, Dale T. & Means, Peter & Zimmerle, Daniel & Galvin, Kathleen & Loomis, John & Paustian, Keith, 2015. "Using contingent behavior analysis to measure benefits from rural electrification in developing countries: an example from Rwanda," Energy Policy, Elsevier, vol. 86(C), pages 393-401.
    7. Aleksandar Dimitrovski & Andrew Ford & Kevin Tomsovic, 2007. "An interdisciplinary approach to long-term modelling for power system expansion," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 3(1/2), pages 235-264.
    8. Olatomiwa, Lanre & Mekhilef, Saad & Huda, A.S.N. & Ohunakin, Olayinka S., 2015. "Economic evaluation of hybrid energy systems for rural electrification in six geo-political zones of Nigeria," Renewable Energy, Elsevier, vol. 83(C), pages 435-446.
    9. Stadler, M. & Groissböck, M. & Cardoso, G. & Marnay, C., 2014. "Optimizing Distributed Energy Resources and building retrofits with the strategic DER-CAModel," Applied Energy, Elsevier, vol. 132(C), pages 557-567.
    10. Ahlborg, Helene & Hammar, Linus, 2014. "Drivers and barriers to rural electrification in Tanzania and Mozambique – Grid-extension, off-grid, and renewable energy technologies," Renewable Energy, Elsevier, vol. 61(C), pages 117-124.
    11. Ahmad, Salman & Mat Tahar, Razman & Muhammad-Sukki, Firdaus & Munir, Abu Bakar & Abdul Rahim, Ruzairi, 2016. "Application of system dynamics approach in electricity sector modelling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 29-37.
    12. Painuly, J.P, 2001. "Barriers to renewable energy penetration; a framework for analysis," Renewable Energy, Elsevier, vol. 24(1), pages 73-89.
    13. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    14. Amutha, W. Margaret & Rajini, V., 2016. "Cost benefit and technical analysis of rural electrification alternatives in southern India using HOMER," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 236-246.
    15. Fadaeenejad, M. & Radzi, M.A.M. & AbKadir, M.Z.A. & Hizam, H., 2014. "Assessment of hybrid renewable power sources for rural electrification in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 299-305.
    16. Andersen, Thomas Barnebeck & Dalgaard, Carl-Johan, 2013. "Power outages and economic growth in Africa," Energy Economics, Elsevier, vol. 38(C), pages 19-23.
    17. Björn Nykvist & Måns Nilsson, 2015. "Rapidly falling costs of battery packs for electric vehicles," Nature Climate Change, Nature, vol. 5(4), pages 329-332, April.
    18. Madubansi, M. & Shackleton, C.M., 2006. "Changing energy profiles and consumption patterns following electrification in five rural villages, South Africa," Energy Policy, Elsevier, vol. 34(18), pages 4081-4092, December.
    19. Schillebeeckx, Simon J.D. & Parikh, Priti & Bansal, Rahul & George, Gerard, 2012. "An integrated framework for rural electrification: Adopting a user-centric approach to business model development," Energy Policy, Elsevier, vol. 48(C), pages 687-697.
    20. Michaël Aklin & Chao-yo Cheng & Johannes Urpelainen & Karthik Ganesan & Abhishek Jain, 2016. "Factors affecting household satisfaction with electricity supply in rural India," Nature Energy, Nature, vol. 1(11), pages 1-6, November.
    21. Kenfack, Joseph & Neirac, François Pascal & Tatietse, Thomas Tamo & Mayer, Didier & Fogue, Médard & Lejeune, André, 2009. "Microhydro-PV-hybrid system: Sizing a small hydro-PV-hybrid system for rural electrification in developing countries," Renewable Energy, Elsevier, vol. 34(10), pages 2259-2263.
    22. Andrew Ford, 2002. "Boom and Bust in Power Plant Construction: Lessons from the California Electricity Crisis," Journal of Industry, Competition and Trade, Springer, vol. 2(1), pages 59-74, June.
    23. Qudrat-Ullah, Hassan, 2013. "Understanding the dynamics of electricity generation capacity in Canada: A system dynamics approach," Energy, Elsevier, vol. 59(C), pages 285-294.
    24. Levin, Todd & Thomas, Valerie M., 2014. "Utility-maximizing financial contracts for distributed rural electrification," Energy, Elsevier, vol. 69(C), pages 613-621.
    25. Nfah, E.M. & Ngundam, J.M., 2009. "Feasibility of pico-hydro and photovoltaic hybrid power systems for remote villages in Cameroon," Renewable Energy, Elsevier, vol. 34(6), pages 1445-1450.
    26. Mandelli, Stefano & Brivio, Claudio & Colombo, Emanuela & Merlo, Marco, 2016. "A sizing methodology based on Levelized Cost of Supplied and Lost Energy for off-grid rural electrification systems," Renewable Energy, Elsevier, vol. 89(C), pages 475-488.
    27. Blum, Nicola U. & Sryantoro Wakeling, Ratri & Schmidt, Tobias S., 2013. "Rural electrification through village grids—Assessing the cost competitiveness of isolated renewable energy technologies in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 482-496.
    28. Castellanos, J.G. & Walker, M. & Poggio, D. & Pourkashanian, M. & Nimmo, W., 2015. "Modelling an off-grid integrated renewable energy system for rural electrification in India using photovoltaics and anaerobic digestion," Renewable Energy, Elsevier, vol. 74(C), pages 390-398.
    29. Bhattacharyya, Subhes C., 2015. "Mini-grid based electrification in Bangladesh: Technical configuration and business analysis," Renewable Energy, Elsevier, vol. 75(C), pages 745-761.
    30. Bernard Tenenbaum & Chris Greacen & Tilak Siyambalapitiya & James Knuckles, 2014. "From the Bottom Up : How Small Power Producers and Mini-Grids Can Deliver Electrification and Renewable Energy in Africa [Quand la lumière vient d'en bas : Comment les petits producteurs d'électric," World Bank Publications - Books, The World Bank Group, number 16571.
    31. Sovacool, Benjamin K., 2013. "A qualitative factor analysis of renewable energy and Sustainable Energy for All (SE4ALL) in the Asia-Pacific," Energy Policy, Elsevier, vol. 59(C), pages 393-403.
    32. Ramchandran, Neeraj & Pai, Rajesh & Parihar, Amit Kumar Singh, 2016. "Feasibility assessment of Anchor-Business-Community model for off-grid rural electrification in India," Renewable Energy, Elsevier, vol. 97(C), pages 197-209.
    33. Kirubi, Charles & Jacobson, Arne & Kammen, Daniel M. & Mills, Andrew, 2009. "Community-Based Electric Micro-Grids Can Contribute to Rural Development: Evidence from Kenya," World Development, Elsevier, vol. 37(7), pages 1208-1221, July.
    34. Díaz, P. & Arias, C.A. & Peña, R. & Sandoval, D., 2010. "FAR from the grid: A rural electrification field study," Renewable Energy, Elsevier, vol. 35(12), pages 2829-2834.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abada, Ibrahim & Othmani, Mehdi & Tatry, Léa, 2021. "An innovative approach for the optimal sizing of mini-grids in rural areas integrating the demand, the supply, and the grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    2. Riva, Fabio & Gardumi, Francesco & Tognollo, Annalisa & Colombo, Emanuela, 2019. "Soft-linking energy demand and optimisation models for local long-term electricity planning: An application to rural India," Energy, Elsevier, vol. 166(C), pages 32-46.
    3. Pedro Ciller & Fernando de Cuadra & Sara Lumbreras, 2019. "Optimizing Off-Grid Generation in Large-Scale Electrification-Planning Problems: A Direct-Search Approach," Energies, MDPI, vol. 12(24), pages 1-22, December.
    4. Garces, Estefany & Franco, Carlos J. & Tomei, Julia & Dyner, Isaac, 2023. "Sustainable electricity supply for small off-grid communities in Colombia: A system dynamics approach," Energy Policy, Elsevier, vol. 172(C).
    5. Lilies Setiartiti & Rahmat Adiprasetya Al-Hasibi, 2021. "Designing Institutional Models For Renewable Energy Project Sustainability," International Journal of Energy Economics and Policy, Econjournals, vol. 11(5), pages 147-156.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trotter, Philipp A. & McManus, Marcelle C. & Maconachie, Roy, 2017. "Electricity planning and implementation in sub-Saharan Africa: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1189-1209.
    2. Comello, Stephen D. & Reichelstein, Stefan J. & Sahoo, Anshuman & Schmidt, Tobias S., 2017. "Enabling Mini-Grid Development in Rural India," World Development, Elsevier, vol. 93(C), pages 94-107.
    3. Yilmaz, Saban & Dincer, Furkan, 2017. "Optimal design of hybrid PV-Diesel-Battery systems for isolated lands: A case study for Kilis, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 344-352.
    4. Bruno Domenech & Laia Ferrer‐Martí & Rafael Pastor, 2019. "Comparison of various approaches to design wind‐PV rural electrification projects in remote areas of developing countries," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(3), May.
    5. Elias Hartvigsson & Erik Oscar Ahlgren & Sverker Molander, 2020. "Tackling complexity and problem formulation in rural electrification through conceptual modelling in system dynamics," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(1), pages 141-153, January.
    6. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    7. Bhatt, Ankit & Sharma, M.P. & Saini, R.P., 2016. "Feasibility and sensitivity analysis of an off-grid micro hydro–photovoltaic–biomass and biogas–diesel–battery hybrid energy system for a remote area in Uttarakhand state, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 53-69.
    8. Subhes C. Bhattacharyya, 2018. "Mini-Grids for the Base of the Pyramid Market: A Critical Review," Energies, MDPI, vol. 11(4), pages 1-21, April.
    9. Izadyar, Nima & Ong, Hwai Chyuan & Chong, W.T. & Leong, K.Y., 2016. "Resource assessment of the renewable energy potential for a remote area: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 908-923.
    10. Goel, Sonali & Sharma, Renu, 2017. "Performance evaluation of stand alone, grid connected and hybrid renewable energy systems for rural application: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1378-1389.
    11. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    12. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    13. Bhattacharyya, S.C. & Palit, D., 2021. "A critical review of literature on the nexus between central grid and off-grid solutions for expanding access to electricity in Sub-Saharan Africa and South Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    14. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    15. Aberilla, Jhud Mikhail & Gallego-Schmid, Alejandro & Stamford, Laurence & Azapagic, Adisa, 2020. "Design and environmental sustainability assessment of small-scale off-grid energy systems for remote rural communities," Applied Energy, Elsevier, vol. 258(C).
    16. Kumar, Jitendra & Suryakiran, B.V. & Verma, Ashu & Bhatti, T.S., 2019. "Analysis of techno-economic viability with demand response strategy of a grid-connected microgrid model for enhanced rural electrification in Uttar Pradesh state, India," Energy, Elsevier, vol. 178(C), pages 176-185.
    17. Yaqoot, Mohammed & Diwan, Parag & Kandpal, Tara C., 2017. "Financial attractiveness of decentralized renewable energy systems – A case of the central Himalayan state of Uttarakhand in India," Renewable Energy, Elsevier, vol. 101(C), pages 973-991.
    18. Irshad, Ahmad Shah & Ludin, Gul Ahmad & Masrur, Hasan & Ahmadi, Mikaeel & Yona, Atsushi & Mikhaylov, Alexey & Krishnan, Narayanan & Senjyu, Tomonobu, 2023. "Optimization of grid-photovoltaic and battery hybrid system with most technically efficient PV technology after the performance analysis," Renewable Energy, Elsevier, vol. 207(C), pages 714-730.
    19. Kennedy, Ryan & Mahajan, Aseem & Urpelainen, Johannes, 2019. "Quality of service predicts willingness to pay for household electricity connections in rural India," Energy Policy, Elsevier, vol. 129(C), pages 319-326.
    20. Klemm, Christian & Vennemann, Peter, 2021. "Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:115:y:2018:i:c:p:509-520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.