IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v34y2014icp145-154.html
   My bibliography  Save this article

The user-value of rural electrification: An analysis and adoption of existing models and theories

Author

Listed:
  • Hirmer, Stephanie
  • Cruickshank, Heather

Abstract

User-value is a determining factor for product acceptance in product design. Research on rural electrification to date, however, does not draw sufficient attention to the importance of user-value with regard to the overall success of a project. This is evident from the analysis of project reports and applicable indicators from agencies active in the sector. Learning from the design, psychology and sociology literatures, it is important that rural electrification projects incorporate the value perception of the end-user and extend their success beyond the commonly used criteria of financial value, the appropriateness of the technology, capacity building and technology uptake. Creating value for the end-user is particularly important for project acceptance and the sustainability of a scheme once it has been handed over to the local community. In this research paper, existing theories and models of value-theory are transposed and applied to community operated rural electrification schemes and a user-value framework is developed. Furthermore, the importance of value to the end-user is clarified. Current literature on product design reveals that user-value has different properties, many of which are applicable to rural electrification. Five value pillars and their sub-categories important for the users of rural electrification projects are identified, namely: functional; social significance; epistemic; emotional; and cultural values. These pillars provide the main structure for the conceptual framework developed in this research paper. It is proposed that by targeting the values of the end-user, the key factors of user-value applicable to rural electrification projects will be identified and the sustainability of the project will be better ensured.

Suggested Citation

  • Hirmer, Stephanie & Cruickshank, Heather, 2014. "The user-value of rural electrification: An analysis and adoption of existing models and theories," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 145-154.
  • Handle: RePEc:eee:rensus:v:34:y:2014:i:c:p:145-154
    DOI: 10.1016/j.rser.2014.03.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114001622
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gunther Bensch & Jochen Kluve & Jörg Peters, 2011. "Impacts of rural electrification in Rwanda," Journal of Development Effectiveness, Taylor & Francis Journals, vol. 3(4), pages 567-588, December.
    2. Yadoo, Annabel & Cruickshank, Heather, 2010. "The value of cooperatives in rural electrification," Energy Policy, Elsevier, vol. 38(6), pages 2941-2947, June.
    3. Yadoo, Annabel & Cruickshank, Heather, 2012. "The role for low carbon electrification technologies in poverty reduction and climate change strategies: A focus on renewable energy mini-grids with case studies in Nepal, Peru and Kenya," Energy Policy, Elsevier, vol. 42(C), pages 591-602.
    4. Friebe, Christian A. & Flotow, Paschen von & Täube, Florian A., 2013. "Exploring the link between products and services in low-income markets—Evidence from solar home systems," Energy Policy, Elsevier, vol. 52(C), pages 760-769.
    5. Allen, Michael W. & Ng, Sik Hung, 1999. "The direct and indirect influences of human values on product ownership," Journal of Economic Psychology, Elsevier, vol. 20(1), pages 5-39, February.
    6. Gali, Jordi, 1994. "Keeping Up with the Joneses: Consumption Externalities, Portfolio Choice, and Asset Prices," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 26(1), pages 1-8, February.
    7. Chaurey, Akanksha & Kandpal, Tara Chandra, 2010. "Assessment and evaluation of PV based decentralized rural electrification: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2266-2278, October.
    8. Jenny C. Aker & Isaac M. Mbiti, 2010. "Mobile Phones and Economic Development in Africa," Journal of Economic Perspectives, American Economic Association, vol. 24(3), pages 207-232, Summer.
    9. Abdullah, Sabah & Jeanty, P. Wilner, 2009. "Demand for Electricity Connection in Rural Areas:The Case of Kenya," Department of Economics Working Papers 17070, University of Bath, Department of Economics.
    10. van Els, Rudi Henri & de Souza Vianna, João Nildo & Brasil, Antonio Cesar Pinho, 2012. "The Brazilian experience of rural electrification in the Amazon with decentralized generation – The need to change the paradigm from electrification to development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1450-1461.
    11. Lahimer, A.A. & Alghoul, M.A. & Sopian, K. & Amin, Nowshad & Asim, Nilofar & Fadhel, M.I., 2012. "Research and development aspects of pico-hydro power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5861-5878.
    12. Reed, Mark S. & Fraser, Evan D.G. & Dougill, Andrew J., 2006. "An adaptive learning process for developing and applying sustainability indicators with local communities," Ecological Economics, Elsevier, vol. 59(4), pages 406-418, October.
    13. repec:zbw:rwirep:0284 is not listed on IDEAS
    14. Pippa Norris & Ronald Inglehart, 2006. "God, Guns and Gays," Public Policy Review, Institute for Public Policy Research, vol. 12(4), pages 224-233.
    15. Madubansi, M. & Shackleton, C.M., 2006. "Changing energy profiles and consumption patterns following electrification in five rural villages, South Africa," Energy Policy, Elsevier, vol. 34(18), pages 4081-4092, December.
    16. Schillebeeckx, Simon J.D. & Parikh, Priti & Bansal, Rahul & George, Gerard, 2012. "An integrated framework for rural electrification: Adopting a user-centric approach to business model development," Energy Policy, Elsevier, vol. 48(C), pages 687-697.
    17. Narula, Kapil & Nagai, Yu & Pachauri, Shonali, 2012. "The role of Decentralized Distributed Generation in achieving universal rural electrification in South Asia by 2030," Energy Policy, Elsevier, vol. 47(C), pages 345-357.
    18. Wolfgang Ulaga, 2003. "Capturing value creation in business relationships: A customer perspective," Post-Print hal-00484963, HAL.
    19. Lahimer, A.A. & Alghoul, M.A. & Yousif, Fadhil & Razykov, T.M. & Amin, N. & Sopian, K., 2013. "Research and development aspects on decentralized electrification options for rural household," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 314-324.
    20. Williams, A.A. & Simpson, R., 2009. "Pico hydro – Reducing technical risks for rural electrification," Renewable Energy, Elsevier, vol. 34(8), pages 1986-1991.
    21. repec:eid:wpaper:26/09 is not listed on IDEAS
    22. Shrimali, Gireesh & Rohra, Sunali, 2012. "India’s solar mission: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6317-6332.
    23. Sheth, Jagdish N. & Newman, Bruce I. & Gross, Barbara L., 1991. "Why we buy what we buy: A theory of consumption values," Journal of Business Research, Elsevier, vol. 22(2), pages 159-170, March.
    24. Pereira, Marcio Giannini & Sena, José Antonio & Freitas, Marcos Aurélio Vasconcelos & Silva, Neilton Fidelis da, 2011. "Evaluation of the impact of access to electricity: A comparative analysis of South Africa, China, India and Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1427-1441, April.
    25. Matinga, Margaret Njirambo & Annegarn, Harold J., 2013. "Paradoxical impacts of electricity on life in a rural South African village," Energy Policy, Elsevier, vol. 58(C), pages 295-302.
    26. Rahman, Md. Mizanur & Paatero, Jukka V. & Poudyal, Aditya & Lahdelma, Risto, 2013. "Driving and hindering factors for rural electrification in developing countries: Lessons from Bangladesh," Energy Policy, Elsevier, vol. 61(C), pages 840-851.
    27. Hirmer, Stephanie & Cruickshank, Heather, 2014. "Making the deployment of pico-PV more sustainable along the value chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 401-411.
    28. Shrimali, Gireesh & Slaski, Xander & Thurber, Mark C. & Zerriffi, Hisham, 2011. "Improved stoves in India: A study of sustainable business models," Energy Policy, Elsevier, vol. 39(12), pages 7543-7556.
    29. repec:oup:wbrobs:v:27:y:2010:i:1:p:33-51 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yong & Yang, Jie & Song, Jian, 2017. "Nano energy system model and nanoscale effect of graphene battery in renewable energy electric vehicle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 652-663.
    2. Li, Yong & Yang, Jie & Song, Jian, 2015. "Electromagnetic effects model and design of energy systems for lithium batteries with gradient structure in sustainable energy electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 842-851.
    3. Terrapon-Pfaff, Julia & Dienst, Carmen & König, Julian & Ortiz, Willington, 2014. "A cross-sectional review: Impacts and sustainability of small-scale renewable energy projects in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1-10.
    4. Li, Yong & Yang, Jie & Song, Jian, 2016. "Structural model, size effect and nano-energy system design for more sustainable energy of solid state automotive battery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 685-697.
    5. repec:eee:rensus:v:79:y:2017:i:c:p:924-934 is not listed on IDEAS
    6. Li, Yong & Yang, Jie & Song, Jian, 2016. "Nano-energy system coupling model and failure characterization of lithium ion battery electrode in electric energy vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1250-1261.
    7. Li, Yong & Yang, Jie & Song, Jian, 2017. "Design principles and energy system scale analysis technologies of new lithium-ion and aluminum-ion batteries for sustainable energy electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 645-651.
    8. Hirmer, Stephanie & Guthrie, Peter, 2016. "Identifying the needs of communities in rural Uganda: A method for determining the ‘User-Perceived Value’ of rural electrification initiatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 476-486.
    9. repec:eee:energy:v:147:y:2018:i:c:p:263-278 is not listed on IDEAS
    10. Li, Yong & Yang, Jie & Song, Jian, 2015. "Microscale characterization of coupled degradation mechanism of graded materials in lithium batteries of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1445-1461.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:34:y:2014:i:c:p:145-154. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.