IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v71y2017icp645-651.html
   My bibliography  Save this article

Design principles and energy system scale analysis technologies of new lithium-ion and aluminum-ion batteries for sustainable energy electric vehicles

Author

Listed:
  • Li, Yong
  • Yang, Jie
  • Song, Jian

Abstract

Battery power is one of the most important sources of energy for vehicles that do not produce harmful gases, electric vehicles. These electric vehicles are also capable of taking advantage of the electric grid to recharge at night. Scientists worldwide are searching for practical battery designs and electrodes with high cycling stability for electric vehicles by combining nanotechnology with surface coating technologies. Multiple tests have been performed upon lithium-ion batteries; however, new research is focusing on aluminum-ion batteries. The production and application of this form of battery technology is expected to improve greatly in the future. This Review summarizes the recent highlights in the energy industry as well as our laboratory work regarding lithium-ion and aluminum-ion batteries. The focus of this work is on battery structure models and nanoscale analysis technologies. Furthermore, this Review outlines the challenges that exist in producing cheaper and more accessible batteries by examining the energy storage and transmission principles of these new batteries. The structure and size effects of nanoparticles allows, as well as probes on the thermodynamic mechanism for mediating lessened battery performance due to heat expansion of the nanostructure. Finally, this Review looks at batteries and electrodes of electric vehicles as objects, commenting on the design ideas and feasibility of new battery technologies.

Suggested Citation

  • Li, Yong & Yang, Jie & Song, Jian, 2017. "Design principles and energy system scale analysis technologies of new lithium-ion and aluminum-ion batteries for sustainable energy electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 645-651.
  • Handle: RePEc:eee:rensus:v:71:y:2017:i:c:p:645-651
    DOI: 10.1016/j.rser.2016.12.094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116311510
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.12.094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yong & Yang, Jie & Song, Jian, 2017. "Nano energy system model and nanoscale effect of graphene battery in renewable energy electric vehicle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 652-663.
    2. Kazu Suenaga & Masanori Koshino, 2010. "Atom-by-atom spectroscopy at graphene edge," Nature, Nature, vol. 468(7327), pages 1088-1090, December.
    3. Yu Zhao & Lina Wang & Hye Ryung Byon, 2013. "High-performance rechargeable lithium-iodine batteries using triiodide/iodide redox couples in an aqueous cathode," Nature Communications, Nature, vol. 4(1), pages 1-7, October.
    4. Hitzeroth, Marion & Megerle, Andreas, 2013. "Renewable Energy Projects: Acceptance Risks and Their Management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 576-584.
    5. Li, Yong & Yang, Jie & Song, Jian, 2017. "Structure models and nano energy system design for proton exchange membrane fuel cells in electric energy vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 160-172.
    6. Li, Yong & Song, Jian & Yang, Jie, 2015. "Graphene models and nano-scale characterization technologies for fuel cell vehicle electrodes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 66-77.
    7. Valentine, Scott Victor, 2011. "Emerging symbiosis: Renewable energy and energy security," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4572-4578.
    8. Hirmer, Stephanie & Cruickshank, Heather, 2014. "The user-value of rural electrification: An analysis and adoption of existing models and theories," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 145-154.
    9. Martín-González, Marisol & Caballero-Calero, O. & Díaz-Chao, P., 2013. "Nanoengineering thermoelectrics for 21st century: Energy harvesting and other trends in the field," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 288-305.
    10. Li, Yong & Yang, Jie & Song, Jian, 2015. "Electromagnetic effects model and design of energy systems for lithium batteries with gradient structure in sustainable energy electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 842-851.
    11. Jiajun Wang & Yu-chen Karen Chen-Wiegart & Jun Wang, 2014. "In operando tracking phase transformation evolution of lithium iron phosphate with hard X-ray microscopy," Nature Communications, Nature, vol. 5(1), pages 1-10, December.
    12. Li, Yong & Yang, Jie & Song, Jian, 2015. "Microscale characterization of coupled degradation mechanism of graded materials in lithium batteries of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1445-1461.
    13. Green II, Robert C. & Wang, Lingfeng & Alam, Mansoor, 2011. "The impact of plug-in hybrid electric vehicles on distribution networks: A review and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 544-553, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Zhen & Wang, Yilan & Ma, Xiaoqian & Shuai, Chuanmin & Zhao, Yujia, 2023. "How critical mineral supply security affects China NEVs industry? Based on a prediction for chromium and cobalt in 2030," Resources Policy, Elsevier, vol. 85(PB).
    2. Zhang, Guangxu & Wei, Xuezhe & Tang, Xuan & Zhu, Jiangong & Chen, Siqi & Dai, Haifeng, 2021. "Internal short circuit mechanisms, experimental approaches and detection methods of lithium-ion batteries for electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    3. Jin, Tao & Jiang, Yulian & Liu, Xingwen, 2023. "Evolutionary game analysis of the impact of dynamic dual credit policy on new energy vehicles after subsidy cancellation," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    4. Robert Robert Muha & Aleš Peroša, 2018. "Energy Consumption And Carbon Footprint Of An Electric Vehicle And A Vehicle With An Internal Combustion Engine," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 13(2), pages 49-58, June.
    5. Mahmoudzadeh Andwari, Amin & Pesiridis, Apostolos & Rajoo, Srithar & Martinez-Botas, Ricardo & Esfahanian, Vahid, 2017. "A review of Battery Electric Vehicle technology and readiness levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 414-430.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yong & Yang, Jie & Song, Jian, 2016. "Structural model, size effect and nano-energy system design for more sustainable energy of solid state automotive battery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 685-697.
    2. Li, Yong & Yang, Jie & Song, Jian, 2016. "Nano-energy system coupling model and failure characterization of lithium ion battery electrode in electric energy vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1250-1261.
    3. Li, Yong & Yang, Jie & Song, Jian, 2015. "Electromagnetic effects model and design of energy systems for lithium batteries with gradient structure in sustainable energy electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 842-851.
    4. Li, Yong & Yang, Jie & Song, Jian, 2015. "Microscale characterization of coupled degradation mechanism of graded materials in lithium batteries of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1445-1461.
    5. Li, Yong & Yang, Jie & Song, Jian, 2017. "Nano energy system model and nanoscale effect of graphene battery in renewable energy electric vehicle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 652-663.
    6. Li, Yong & Yang, Jie & Song, Jian, 2017. "Efficient storage mechanisms and heterogeneous structures for building better next-generation lithium rechargeable batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1503-1512.
    7. Li, Yong & Yang, Jie & Song, Jian, 2017. "Structure models and nano energy system design for proton exchange membrane fuel cells in electric energy vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 160-172.
    8. Mahmoudzadeh Andwari, Amin & Pesiridis, Apostolos & Rajoo, Srithar & Martinez-Botas, Ricardo & Esfahanian, Vahid, 2017. "A review of Battery Electric Vehicle technology and readiness levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 414-430.
    9. Li, Yong & Yang, Jie & Song, Jian, 2017. "Design structure model and renewable energy technology for rechargeable battery towards greener and more sustainable electric vehicle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 19-25.
    10. Li, Yong & Song, Jian & Yang, Jie, 2015. "Graphene models and nano-scale characterization technologies for fuel cell vehicle electrodes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 66-77.
    11. Terrapon-Pfaff, Julia & Dienst, Carmen & König, Julian & Ortiz, Willington, 2014. "A cross-sectional review: Impacts and sustainability of small-scale renewable energy projects in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1-10.
    12. Fuad Un-Noor & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Mohammad Nurunnabi Mollah & Eklas Hossain, 2017. "A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development," Energies, MDPI, vol. 10(8), pages 1-84, August.
    13. George Adwek & Shen Boxiong & Paul O. Ndolo & Zachary O. Siagi & Chebet Chepsaigutt & Cicilia M. Kemunto & Moses Arowo & John Shimmon & Patrobers Simiyu & Abel C. Yabo, 2020. "The solar energy access in Kenya: a review focusing on Pay-As-You-Go solar home system," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 3897-3938, June.
    14. Fankhauser, Samuel & Jotzo, Frank, 2017. "Economic growth and development with low-carbon energy," LSE Research Online Documents on Economics 86850, London School of Economics and Political Science, LSE Library.
    15. Paul Codani & Pierre-Louis Le Portz & Pierre Claverie & Marc Petit & Yannick Perez, 2016. "Coupling local renewable energy production with electric vehicle charging: a survey of the French case," International Journal of Automotive Technology and Management, Inderscience Enterprises Ltd, vol. 16(1), pages 55-69.
    16. Syed Zulqadar Hassan & Tariq Kamal & Muhammad Hussnain Riaz & Syed Aamir Hussain Shah & Hina Gohar Ali & Muhammad Tanveer Riaz & Muhammad Sarmad & Amir Zahoor & Muhammad Abbas Khan & Julio Pascual Miq, 2019. "Intelligent Control of Wind-Assisted PHEVs Smart Charging Station," Energies, MDPI, vol. 12(5), pages 1-31, March.
    17. Kirchhoff, Hannes & Strunz, Kai, 2019. "Key drivers for successful development of peer-to-peer microgrids for swarm electrification," Applied Energy, Elsevier, vol. 244(C), pages 46-62.
    18. Eising, Jan Willem & van Onna, Tom & Alkemade, Floortje, 2014. "Towards smart grids: Identifying the risks that arise from the integration of energy and transport supply chains," Applied Energy, Elsevier, vol. 123(C), pages 448-455.
    19. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    20. Mazur, Christoph & Hoegerle, Yannick & Brucoli, Maria & van Dam, Koen & Guo, Miao & Markides, Christos N. & Shah, Nilay, 2019. "A holistic resilience framework development for rural power systems in emerging economies," Applied Energy, Elsevier, vol. 235(C), pages 219-232.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:71:y:2017:i:c:p:645-651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.