IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01660228.html
   My bibliography  Save this paper

Coupling local renewable energy production with electric vehicle charging: a survey of the French case

Author

Listed:
  • Paul Codani

    (GeePs - Laboratoire Génie électrique et électronique de Paris - UP11 - Université Paris-Sud - Paris 11 - UPMC - Université Pierre et Marie Curie - Paris 6 - CentraleSupélec - CNRS - Centre National de la Recherche Scientifique)

  • Pierre-Louis Le Portz

    (GeePs - Laboratoire Génie électrique et électronique de Paris - UP11 - Université Paris-Sud - Paris 11 - UPMC - Université Pierre et Marie Curie - Paris 6 - CentraleSupélec - CNRS - Centre National de la Recherche Scientifique)

  • Pierre Claverie

    (GeePs - Laboratoire Génie électrique et électronique de Paris - UP11 - Université Paris-Sud - Paris 11 - UPMC - Université Pierre et Marie Curie - Paris 6 - CentraleSupélec - CNRS - Centre National de la Recherche Scientifique)

  • Marc Petit

    (GeePs - Laboratoire Génie électrique et électronique de Paris - UP11 - Université Paris-Sud - Paris 11 - UPMC - Université Pierre et Marie Curie - Paris 6 - CentraleSupélec - CNRS - Centre National de la Recherche Scientifique)

  • Yannick Perez

    (LGI - Laboratoire Génie Industriel - EA 2606 - CentraleSupélec)

Abstract

The share of renewable energy sources (RES) production in energy mixes, especially the ones of PV panels and wind farms, has been continuously increasing during the last few years. Similarly, a strong development of battery electric vehicles (EV) is expected within the next years. However, these two new innovations could trigger local security issues on electrical grids. One way to mitigate these problems could be to combine the charging periods of the EVs with the local RES production. This paper aims at analysing the possibility to implement this kind of smart charging strategy in France by 2020, taking into account the wide diversity of local energy mixes in France and their seasonal dependencies. The results show the achievable green charging ratio for the EV fleet per season and per region, with and without a smart charging strategy.

Suggested Citation

  • Paul Codani & Pierre-Louis Le Portz & Pierre Claverie & Marc Petit & Yannick Perez, 2016. "Coupling local renewable energy production with electric vehicle charging: a survey of the French case," Post-Print hal-01660228, HAL.
  • Handle: RePEc:hal:journl:hal-01660228
    DOI: 10.1504/IJATM.2016.076443
    Note: View the original document on HAL open archive server: https://hal.science/hal-01660228
    as

    Download full text from publisher

    File URL: https://hal.science/hal-01660228/document
    Download Restriction: no

    File URL: https://libkey.io/10.1504/IJATM.2016.076443?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gustavo A. Marrero & Yannick Perez & Marc Petit & Francisco Javier Ramos-Real, 2015. "Electric vehicle fleet contributions for isolated systems. The case of the Canary Islands," International Journal of Automotive Technology and Management, Inderscience Enterprises Ltd, vol. 15(2), pages 171-193.
    2. Green II, Robert C. & Wang, Lingfeng & Alam, Mansoor, 2011. "The impact of plug-in hybrid electric vehicles on distribution networks: A review and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 544-553, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    2. Codani, Paul & Perez, Yannick & Petit, Marc, 2016. "Financial shortfall for electric vehicles: Economic impacts of Transmission System Operators market designs," Energy, Elsevier, vol. 113(C), pages 422-431.
    3. Walter Leal Filho & Ismaila Rimi Abubakar & Richard Kotter & Thomas Skou Grindsted & Abdul-Lateef Balogun & Amanda Lange Salvia & Yusuf A. Aina & Franziska Wolf, 2021. "Framing Electric Mobility for Urban Sustainability in a Circular Economy Context: An Overview of the Literature," Sustainability, MDPI, vol. 13(14), pages 1-23, July.
    4. Pei Huang & Xingxing Zhang & Benedetta Copertaro & Puneet Kumar Saini & Da Yan & Yi Wu & Xiangjie Chen, 2020. "A Technical Review of Modeling Techniques for Urban Solar Mobility: Solar to Buildings, Vehicles, and Storage (S2BVS)," Sustainability, MDPI, vol. 12(17), pages 1-37, August.
    5. Popiolek, Nathalie & Thais, Françoise, 2016. "Multi-criteria analysis of innovation policies in favour of solar mobility in France by 2030," Energy Policy, Elsevier, vol. 97(C), pages 202-219.
    6. Carole Donada & Yannick Perez, 2018. "Editorial 2018," Post-Print halshs-01980648, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yong & Yang, Jie & Song, Jian, 2015. "Electromagnetic effects model and design of energy systems for lithium batteries with gradient structure in sustainable energy electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 842-851.
    2. Syed Zulqadar Hassan & Tariq Kamal & Muhammad Hussnain Riaz & Syed Aamir Hussain Shah & Hina Gohar Ali & Muhammad Tanveer Riaz & Muhammad Sarmad & Amir Zahoor & Muhammad Abbas Khan & Julio Pascual Miq, 2019. "Intelligent Control of Wind-Assisted PHEVs Smart Charging Station," Energies, MDPI, vol. 12(5), pages 1-31, March.
    3. Ramos-Real, Francisco J. & Ramírez-Díaz, Alfredo & Marrero, Gustavo A. & Perez, Yannick, 2018. "Willingness to pay for electric vehicles in island regions: The case of Tenerife (Canary Islands)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 140-149.
    4. Eising, Jan Willem & van Onna, Tom & Alkemade, Floortje, 2014. "Towards smart grids: Identifying the risks that arise from the integration of energy and transport supply chains," Applied Energy, Elsevier, vol. 123(C), pages 448-455.
    5. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    6. Sajjad Haider & Peter Schegner, 2020. "Heuristic Optimization of Overloading Due to Electric Vehicles in a Low Voltage Grid," Energies, MDPI, vol. 13(22), pages 1-19, November.
    7. Rahman, Imran & Vasant, Pandian M. & Singh, Balbir Singh Mahinder & Abdullah-Al-Wadud, M. & Adnan, Nadia, 2016. "Review of recent trends in optimization techniques for plug-in hybrid, and electric vehicle charging infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1039-1047.
    8. Romo, R. & Micheloud, O., 2015. "Power quality of actual grids with plug-in electric vehicles in presence of renewables and micro-grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 189-200.
    9. Mehrjerdi, Hasan & Bornapour, Mosayeb & Hemmati, Reza & Ghiasi, Seyyed Mohammad Sadegh, 2019. "Unified energy management and load control in building equipped with wind-solar-battery incorporating electric and hydrogen vehicles under both connected to the grid and islanding modes," Energy, Elsevier, vol. 168(C), pages 919-930.
    10. Rahman, Syed & Khan, Irfan Ahmed & Khan, Ashraf Ali & Mallik, Ayan & Nadeem, Muhammad Faisal, 2022. "Comprehensive review & impact analysis of integrating projected electric vehicle charging load to the existing low voltage distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    11. Li, Yong & Yang, Jie & Song, Jian, 2017. "Design principles and energy system scale analysis technologies of new lithium-ion and aluminum-ion batteries for sustainable energy electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 645-651.
    12. Liu, Hui & Huang, Kai & Wang, Ni & Qi, Junjian & Wu, Qiuwei & Ma, Shicong & Li, Canbing, 2019. "Optimal dispatch for participation of electric vehicles in frequency regulation based on area control error and area regulation requirement," Applied Energy, Elsevier, vol. 240(C), pages 46-55.
    13. Soares M.C. Borba, Bruno & Szklo, Alexandre & Schaeffer, Roberto, 2012. "Plug-in hybrid electric vehicles as a way to maximize the integration of variable renewable energy in power systems: The case of wind generation in northeastern Brazil," Energy, Elsevier, vol. 37(1), pages 469-481.
    14. Frew, Bethany A. & Becker, Sarah & Dvorak, Michael J. & Andresen, Gorm B. & Jacobson, Mark Z., 2016. "Flexibility mechanisms and pathways to a highly renewable US electricity future," Energy, Elsevier, vol. 101(C), pages 65-78.
    15. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    16. Bhatti, Abdul Rauf & Salam, Zainal & Aziz, Mohd Junaidi Bin Abdul & Yee, Kong Pui & Ashique, Ratil H., 2016. "Electric vehicles charging using photovoltaic: Status and technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 34-47.
    17. Qinliang Tan & Minnan Wang & Yanming Deng & Haiping Yang & Rao Rao & Xingping Zhang, 2014. "The Cultivation of Electric Vehicles Market in China: Dilemma and Solution," Sustainability, MDPI, vol. 6(8), pages 1-19, August.
    18. Yong, Jia Ying & Ramachandaramurthy, Vigna K. & Tan, Kang Miao & Mithulananthan, N., 2015. "A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 365-385.
    19. Jordi Perdiguero & Juan Luis Jiménez, 2012. "“Policy options for the promotion of electric vehicles: a review”," IREA Working Papers 201208, University of Barcelona, Research Institute of Applied Economics, revised Mar 2012.
    20. Turner, Karen & Alabi, Oluwafisayo & Smith, Martin & Irvine, John & Dodds, Paul E., 2018. "Framing policy on low emissions vehicles in terms of economic gains: Might the most straightforward gain be delivered by supply chain activity to support refuelling?," Energy Policy, Elsevier, vol. 119(C), pages 528-534.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01660228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.