IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v16y2012i7p4818-4848.html
   My bibliography  Save this article

Energy requirements for water production, treatment, end use, reclamation, and disposal

Author

Listed:
  • Plappally, A.K.
  • Lienhard V, J.H.

Abstract

Energy is consumed at every stage of the cycle of water supply, treatment, use and disposal. The intensity of energy consumption (kWh/m3) depends upon the specific technologies applied at each stage of the water cycle. For some technologies, the intensity may be relatively low, whereas the intensity of other technologies is substantially greater. This report surveys the available literature on energy intensity for water use in the municipal and agricultural sectors and separates the process into several stages. Water supply, water treatment, residential end use, wastewater treatment, and agriculture end use are considered. Representative values of the energy consumed per unit water are given for a broad range of processes. Water extraction and pumping from ground and surface sources is considered. The energy intensity of treatment required for different types of water source is found to vary widely between the extremes of relatively fresh surface waters, which use energy mainly in pumping, and seawater, which requires desalination. Energy usage for different methods of irrigation including pressurized as well as surface irrigation is studied. The energy intensity of residential end use is very high relative to other parts of the water supply cycle. Processes such as heating water, washing clothes and dishes, and cooking are briefly studied within the water end-use stage. Hot water usage is responsible for making end use the most energy intensive stage of the water cycle. Hot water use in different buildings is briefly reviewed. Wastewater treated with various processes is considered, and the energy intensity is found to be highest when advanced wastewater treatment methods are applied. Energy consumption in the agricultural sector, which is principally related to irrigation pumping, is generally of lower energy intensity than for the municipal treatment or end use.

Suggested Citation

  • Plappally, A.K. & Lienhard V, J.H., 2012. "Energy requirements for water production, treatment, end use, reclamation, and disposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4818-4848.
  • Handle: RePEc:eee:rensus:v:16:y:2012:i:7:p:4818-4848
    DOI: 10.1016/j.rser.2012.05.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032112003541
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.05.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singh, H. & Singh, A.K. & Kushwaha, H.L. & Singh, Amit, 2007. "Energy consumption pattern of wheat production in India," Energy, Elsevier, vol. 32(10), pages 1848-1854.
    2. Heidari, M.D. & Omid, M., 2011. "Energy use patterns and econometric models of major greenhouse vegetable productions in Iran," Energy, Elsevier, vol. 36(1), pages 220-225.
    3. Mohammadi, Ali & Omid, Mahmoud, 2010. "Economical analysis and relation between energy inputs and yield of greenhouse cucumber production in Iran," Applied Energy, Elsevier, vol. 87(1), pages 191-196, January.
    4. Rafiee, Shahin & Mousavi Avval, Seyed Hashem & Mohammadi, Ali, 2010. "Modeling and sensitivity analysis of energy inputs for apple production in Iran," Energy, Elsevier, vol. 35(8), pages 3301-3306.
    5. Mohammadi, Ali & Rafiee, Shahin & Mohtasebi, Seyed Saeid & Rafiee, Hamed, 2010. "Energy inputs – yield relationship and cost analysis of kiwifruit production in Iran," Renewable Energy, Elsevier, vol. 35(5), pages 1071-1075.
    6. Yuan, Chaoqing & Liu, Sifeng & Wu, Junlong, 2010. "The relationship among energy prices and energy consumption in China," Energy Policy, Elsevier, vol. 38(1), pages 197-207, January.
    7. Kempton, Willett & Montgomery, Laura, 1982. "Folk quantification of energy," Energy, Elsevier, vol. 7(10), pages 817-827.
    8. Çetin, Bahattin & Vardar, Ali, 2008. "An economic analysis of energy requirements and input costs for tomato production in Turkey," Renewable Energy, Elsevier, vol. 33(3), pages 428-433.
    9. Narayan, G. Prakash & Sharqawy, Mostafa H. & Summers, Edward K. & Lienhard, John H. & Zubair, Syed M. & Antar, M.A., 2010. "The potential of solar-driven humidification-dehumidification desalination for small-scale decentralized water production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1187-1201, May.
    10. Lin, Jiang & Iyer, Maithili, 2007. "Cold or hot wash: Technological choices, cultural change, and their impact on clothes-washing energy use in China," Energy Policy, Elsevier, vol. 35(5), pages 3046-3052, May.
    11. Sovacool, Benjamin K. & Sovacool, Kelly E., 2009. "Identifying future electricity-water tradeoffs in the United States," Energy Policy, Elsevier, vol. 37(7), pages 2763-2773, July.
    12. Gude, Veera Gnaneswar & Nirmalakhandan, Nagamany & Deng, Shuguang, 2010. "Renewable and sustainable approaches for desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2641-2654, December.
    13. Shimoda, Yoshiyuki & Okamura, Tomo & Yamaguchi, Yohei & Yamaguchi, Yukio & Taniguchi, Ayako & Morikawa, Takao, 2010. "City-level energy and CO2 reduction effect by introducing new residential water heaters," Energy, Elsevier, vol. 35(12), pages 4880-4891.
    14. Wallgren, Christine & Höjer, Mattias, 2009. "Eating energy--Identifying possibilities for reduced energy use in the future food supply system," Energy Policy, Elsevier, vol. 37(12), pages 5803-5813, December.
    15. Sharmila, N. & Jalihal, Purnima & Swamy, A.K. & Ravindran, M., 2004. "Wave powered desalination system," Energy, Elsevier, vol. 29(11), pages 1659-1672.
    16. Esengun, Kemal & Erdal, Gülistan & Gündüz, Orhan & Erdal, Hilmi, 2007. "An economic analysis and energy use in stake-tomato production in Tokat province of Turkey," Renewable Energy, Elsevier, vol. 32(11), pages 1873-1881.
    17. Kempton, Willett, 1988. "Residential hot water: A behaviorally-driven system," Energy, Elsevier, vol. 13(1), pages 107-114.
    18. Gurunathan, S. & Palanisami, Kuppannan, 2008. "Energy Use and its Efficiency in Tamil Nadu Agriculture: A Case Study of Different Groundwater Development Regions in Coimbatore District of Tamil Nadu," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 21(1).
    19. Erdal, Gülistan & Esengün, Kemal & Erdal, Hilmi & Gündüz, Orhan, 2007. "Energy use and economical analysis of sugar beet production in Tokat province of Turkey," Energy, Elsevier, vol. 32(1), pages 35-41.
    20. Gerhard Piringer & Laura J. Steinberg, 2006. "Reevaluation of Energy Use in Wheat Production in the United States," Journal of Industrial Ecology, Yale University, vol. 10(1‐2), pages 149-167, January.
    21. Mukherji, Aditi, 2007. "The energy-irrigation nexus and its impact on groundwater markets in eastern Indo-Gangetic basin: Evidence from West Bengal, India," Energy Policy, Elsevier, vol. 35(12), pages 6413-6430, December.
    22. Yu, Biying & Zhang, Junyi & Fujiwara, Akimasa, 2011. "Representing in-home and out-of-home energy consumption behavior in Beijing," Energy Policy, Elsevier, vol. 39(7), pages 4168-4177, July.
    23. Ashlynn S. Stillwell & David C. Hoppock & Michael E. Webber, 2010. "Energy Recovery from Wastewater Treatment Plants in the United States: A Case Study of the Energy-Water Nexus," Sustainability, MDPI, vol. 2(4), pages 1-18, April.
    24. Leidl, Chantelle M. & David Lubitz, W., 2009. "Comparing domestic water heating technologies," Technology in Society, Elsevier, vol. 31(3), pages 244-256.
    25. Siddiqi, Afreen & Anadon, Laura Diaz, 2011. "The water-energy nexus in Middle East and North Africa," Energy Policy, Elsevier, vol. 39(8), pages 4529-4540, August.
    26. Deng, Runya & Xie, Lixin & Lin, Hu & Liu, Jie & Han, Wei, 2010. "Integration of thermal energy and seawater desalination," Energy, Elsevier, vol. 35(11), pages 4368-4374.
    27. Turiel, Isaac & Craig, Paul & Levine, Mark & McMahon, Jim & McCollister, George & Hesterberg, Beverly & Robinson, Michael, 1987. "Estimation of energy intensity by end-use for commercial buildings," Energy, Elsevier, vol. 12(6), pages 435-446.
    28. Tassou, S. A., 1988. "Energy conservation and resource utilisation in waste-water treatment plants," Applied Energy, Elsevier, vol. 30(2), pages 113-129.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elsoragaby, Suha & Yahya, Azmi & Mahadi, Muhammad Razif & Nawi, Nazmi Mat & Mairghany, Modather, 2019. "Energy utilization in major crop cultivation," Energy, Elsevier, vol. 173(C), pages 1285-1303.
    2. Asgharipour, Mohammad Reza & Mondani, Farzad & Riahinia, Shahram, 2012. "Energy use efficiency and economic analysis of sugar beet production system in Iran: A case study in Khorasan Razavi province," Energy, Elsevier, vol. 44(1), pages 1078-1084.
    3. Ghatrehsamani, Shirin & Ebrahimi, Rahim & Kazi, Salim Newaz & Badarudin Badry, Ahmad & Sadeghinezhad, Emad, 2016. "Optimization model of peach production relevant to input energies – Yield function in Chaharmahal va Bakhtiari province, Iran," Energy, Elsevier, vol. 99(C), pages 315-321.
    4. Barut, Zeliha Bereket & Ertekin, Can & Karaagac, Hasan Ali, 2011. "Tillage effects on energy use for corn silage in Mediterranean Coastal of Turkey," Energy, Elsevier, vol. 36(9), pages 5466-5475.
    5. Elahi, Ehsan & Zhang, Zhixin & Khalid, Zainab & Xu, Haiyun, 2022. "Application of an artificial neural network to optimise energy inputs: An energy- and cost-saving strategy for commercial poultry farms," Energy, Elsevier, vol. 244(PB).
    6. Mohammadi, Ali & Rafiee, Shahin & Mohtasebi, Seyed Saeid & Mousavi Avval, Seyed Hashem & Rafiee, Hamed, 2011. "Energy efficiency improvement and input cost saving in kiwifruit production using Data Envelopment Analysis approach," Renewable Energy, Elsevier, vol. 36(9), pages 2573-2579.
    7. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Yousefi, Marziye & Movahedi, Mehran, 2013. "Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks," Energy, Elsevier, vol. 52(C), pages 333-338.
    8. Samavatean, Naeimeh & Rafiee, Shahin & Mobli, Hossein & Mohammadi, Ali, 2011. "An analysis of energy use and relation between energy inputs and yield, costs and income of garlic production in Iran," Renewable Energy, Elsevier, vol. 36(6), pages 1808-1813.
    9. Elahi, Ehsan & Weijun, Cui & Jha, Sunil Kumar & Zhang, Huiming, 2019. "Estimation of realistic renewable and non-renewable energy use targets for livestock production systems utilising an artificial neural network method: A step towards livestock sustainability," Energy, Elsevier, vol. 183(C), pages 191-204.
    10. Hemmati, Abolfazl & Tabatabaeefar, Ahmad & Rajabipour, Ali, 2013. "Comparison of energy flow and economic performance between flat land and sloping land olive orchards," Energy, Elsevier, vol. 61(C), pages 472-478.
    11. Jamali, Mohsen & Soufizadeh, Saeid & Yeganeh, Bijan & Emam, Yahya, 2021. "A comparative study of irrigation techniques for energy flow and greenhouse gas (GHG) emissions in wheat agroecosystems under contrasting environments in south of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    12. nasim monjezi & Mohammad Javad Sheikhdavoodi & morteza taki, 2011. "Energy use pattern and optimization of energy consumption for greenhouse cucumber production in Iran using data envelopment analysis (DEA)," Modern Applied Science, Canadian Center of Science and Education, vol. 5(6), pages 139-139, December.
    13. Tabatabaie, Seyed Mohammad Hossein & Rafiee, Shahin & Keyhani, Alireza & Heidari, Mohammad Davoud, 2013. "Energy use pattern and sensitivity analysis of energy inputs and input costs for pear production in Iran," Renewable Energy, Elsevier, vol. 51(C), pages 7-12.
    14. Pishgar Komleh, S.H. & Keyhani, A. & Rafiee, Sh. & Sefeedpary, P., 2011. "Energy use and economic analysis of corn silage production under three cultivated area levels in Tehran province of Iran," Energy, Elsevier, vol. 36(5), pages 3335-3341.
    15. Kosemani, Babajide S. & Bamgboye, A. Isaac, 2020. "Energy input-output analysis of rice production in Nigeria," Energy, Elsevier, vol. 207(C).
    16. Kuswardhani, Nita & Soni, Peeyush & Shivakoti, Ganesh P., 2013. "Comparative energy input–output and financial analyses of greenhouse and open field vegetables production in West Java, Indonesia," Energy, Elsevier, vol. 53(C), pages 83-92.
    17. Zangeneh, Morteza & Omid, Mahmoud & Akram, Asadollah, 2010. "A comparative study on energy use and cost analysis of potato production under different farming technologies in Hamadan province of Iran," Energy, Elsevier, vol. 35(7), pages 2927-2933.
    18. Hamedani, Sara Rajabi & Shabani, Zeinab & Rafiee, Shahin, 2011. "Energy inputs and crop yield relationship in potato production in Hamadan province of Iran," Energy, Elsevier, vol. 36(5), pages 2367-2371.
    19. Banaeian, Narges & Zangeneh, Morteza, 2011. "Study on energy efficiency in corn production of Iran," Energy, Elsevier, vol. 36(8), pages 5394-5402.
    20. M.R. Jadidi & M.S. Sabuni & M. Homayounifar & A. Mohammadi, 2012. "Assessment of energy use pattern for tomato production in Iran: A case study from the Marand region," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 58(2), pages 50-56.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:16:y:2012:i:7:p:4818-4848. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.