IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i11p4368-4374.html
   My bibliography  Save this article

Integration of thermal energy and seawater desalination

Author

Listed:
  • Deng, Runya
  • Xie, Lixin
  • Lin, Hu
  • Liu, Jie
  • Han, Wei

Abstract

Energy and freshwater shortage are the bottlenecks restricting China's economic development. The integration of energy utilization system and seawater desalination is considered as an innovative technology enabling efficient simultaneous use of middle or low temperature thermal energy and supply freshwater. Three feasible approaches to integrate seawater desalination with energy utilization system are presented in this paper, including combinations of the desalination process with a Combined Cooling Heating & Power system (CCHP), a power plant, or a solar thermal utilization system. In addition, the feasibility and advantages of a seawater desalination system combined with a power plant are described. The findings indicate that combining seawater desalination with industrial processes is a feasible and promising way to solve the problems of the lack of freshwater and low efficient use of low temperature thermal energy in coastland areas.

Suggested Citation

  • Deng, Runya & Xie, Lixin & Lin, Hu & Liu, Jie & Han, Wei, 2010. "Integration of thermal energy and seawater desalination," Energy, Elsevier, vol. 35(11), pages 4368-4374.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:11:p:4368-4374
    DOI: 10.1016/j.energy.2009.05.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544209002096
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2009.05.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kalogirou, Soteris, 1997. "Survey of solar desalination systems and system selection," Energy, Elsevier, vol. 22(1), pages 69-81.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Van Vang Le & Lan Huong Nguyen, 2019. "Design And Fabrication Of Distillation Equipment Of Fresh Water From The Seawater By The Use Of The Waste Heat From Diesel Engines," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(2), pages 79-83, March.
    2. Huang, Jian & Hu, Yanwei & Bai, Yijie & He, Yurong & Zhu, Jiaqi, 2020. "Solar membrane distillation enhancement through thermal concentration," Energy, Elsevier, vol. 211(C).
    3. Gude, Veera Gnaneswar & Nirmalakhandan, Nagamany & Deng, Shuguang, 2011. "Desalination using solar energy: Towards sustainability," Energy, Elsevier, vol. 36(1), pages 78-85.
    4. Huang, Jian & He, Yurong & Hu, Yanwei & Wang, Xinzhi, 2018. "Steam generation enabled by a high efficiency solar absorber with thermal concentration," Energy, Elsevier, vol. 165(PB), pages 1282-1291.
    5. Sharshir, S.W. & Elsheikh, A.H. & Peng, Guilong & Yang, Nuo & El-Samadony, M.O.A. & Kabeel, A.E., 2017. "Thermal performance and exergy analysis of solar stills – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 521-544.
    6. Li, Chennan & Goswami, Yogi & Stefanakos, Elias, 2013. "Solar assisted sea water desalination: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 136-163.
    7. Zhao, Ruikai & Zhao, Li & Deng, Shuai & Zheng, Nan, 2015. "Trends in patents for solar thermal utilization in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 852-862.
    8. Tsolas, Spyridon D. & Karim, M. Nazmul & Hasan, M.M. Faruque, 2018. "Optimization of water-energy nexus: A network representation-based graphical approach," Applied Energy, Elsevier, vol. 224(C), pages 230-250.
    9. Plappally, A.K. & Lienhard V, J.H., 2012. "Energy requirements for water production, treatment, end use, reclamation, and disposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4818-4848.
    10. Li, Chennan & Goswami, D. Yogi & Shapiro, Andrew & Stefanakos, Elias K. & Demirkaya, Gokmen, 2012. "A new combined power and desalination system driven by low grade heat for concentrated brine," Energy, Elsevier, vol. 46(1), pages 582-595.
    11. Liben Gao & Yujie Dong & Huiping Guo, 2022. "Selection of Planning Options of Electricity and Freshwater Cogeneration Method Based on High-Temperature Gas-Cooled Reactor," Energies, MDPI, vol. 15(12), pages 1-14, June.
    12. M. Syafwansyah Effendi & Noor Rahman & Ahmad Hendrawan, 2017. "The Use of Sollar Collector as Preheater and Condensate Pipe as Heat Recovery in Basin Solar Still to Increase Efficency," International Journal of Technology and Engineering Studies, PROF.IR.DR.Mohid Jailani Mohd Nor, vol. 3(6), pages 264-273.
    13. Gorjian, Shiva & Ghobadian, Barat, 2015. "Solar desalination: A sustainable solution to water crisis in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 571-584.
    14. Palenzuela, Patricia & Zaragoza, Guillermo & Alarcón-Padilla, Diego C. & Guillén, Elena & Ibarra, Mercedes & Blanco, Julián, 2011. "Assessment of different configurations for combined parabolic-trough (PT) solar power and desalination plants in arid regions," Energy, Elsevier, vol. 36(8), pages 4950-4958.
    15. Yu, Xiyu & Huang, Maoquan & Wang, Xinyu & Sun, Qie & Tang, G.H. & Du, Mu, 2022. "Toward optical selectivity aerogels by plasmonic nanoparticles doping," Renewable Energy, Elsevier, vol. 190(C), pages 741-751.
    16. Kouta, Amine & Al-Sulaiman, Fahad A. & Atif, Maimoon, 2017. "Energy analysis of a solar driven cogeneration system using supercritical CO2 power cycle and MEE-TVC desalination system," Energy, Elsevier, vol. 119(C), pages 996-1009.
    17. Smith, Kate & Liu, Shuming & Liu, Ying & Guo, Shengjie, 2018. "Can China reduce energy for water? A review of energy for urban water supply and wastewater treatment and suggestions for change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 41-58.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoffmann, J.E. & Dall, E.P., 2018. "Integrating desalination with concentrating solar thermal power: A Namibian case study," Renewable Energy, Elsevier, vol. 115(C), pages 423-432.
    2. Li, Chennan & Goswami, Yogi & Stefanakos, Elias, 2013. "Solar assisted sea water desalination: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 136-163.
    3. Saleh, A. & Qudeiri, J.A. & Al-Nimr, M.A., 2011. "Performance investigation of a salt gradient solar pond coupled with desalination facility near the Dead Sea," Energy, Elsevier, vol. 36(2), pages 922-931.
    4. El-Bahi, A. & Inan, D., 1999. "Analysis of a parallel double glass solar still with separate condenser," Renewable Energy, Elsevier, vol. 17(4), pages 509-521.
    5. Gude, Veera Gnaneswar, 2015. "Energy storage for desalination processes powered by renewable energy and waste heat sources," Applied Energy, Elsevier, vol. 137(C), pages 877-898.
    6. Gorjian, Shiva & Ghobadian, Barat, 2015. "Solar desalination: A sustainable solution to water crisis in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 571-584.
    7. Ahmed, M.I. & Hrairi, M. & Ismail, A.F., 2009. "On the characteristics of multistage evacuated solar distillation," Renewable Energy, Elsevier, vol. 34(6), pages 1471-1478.
    8. Huang, Jian & He, Yurong & Hu, Yanwei & Wang, Xinzhi, 2018. "Steam generation enabled by a high efficiency solar absorber with thermal concentration," Energy, Elsevier, vol. 165(PB), pages 1282-1291.
    9. Seixas, M. & Melício, R. & Mendes, V.M.F., 2014. "Offshore wind turbine simulation: Multibody drive train. Back-to-back NPC (neutral point clamped) converters. Fractional-order control," Energy, Elsevier, vol. 69(C), pages 357-369.
    10. Palenzuela, Patricia & Zaragoza, Guillermo & Alarcón-Padilla, Diego-César, 2015. "Characterisation of the coupling of multi-effect distillation plants to concentrating solar power plants," Energy, Elsevier, vol. 82(C), pages 986-995.
    11. Gude, Veera Gnaneswar & Nirmalakhandan, Nagamany & Deng, Shuguang, 2011. "Desalination using solar energy: Towards sustainability," Energy, Elsevier, vol. 36(1), pages 78-85.
    12. M, Chandrashekara & Yadav, Avadhesh, 2017. "Water desalination system using solar heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1308-1330.
    13. Gude, Veera Gnaneswar & Nirmalakhandan, Nagamany & Deng, Shuguang, 2010. "Renewable and sustainable approaches for desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2641-2654, December.
    14. Baccioli, A. & Antonelli, M. & Desideri, U. & Grossi, A., 2018. "Thermodynamic and economic analysis of the integration of Organic Rankine Cycle and Multi-Effect Distillation in waste-heat recovery applications," Energy, Elsevier, vol. 161(C), pages 456-469.
    15. Madhlopa, A. & Johnstone, C., 2009. "Numerical study of a passive solar still with separate condenser," Renewable Energy, Elsevier, vol. 34(7), pages 1668-1677.
    16. Mohamed, A.S.A. & Shahdy, Abanob G. & Mohamed, Hany A. & Ahmed, M. Salem, 2023. "A comprehensive review of the vacuum solar still systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    17. Ghaithan, Ahmed M. & Al-Hanbali, Ahmad & Mohammed, Awsan & Attia, Ahmed M. & Saleh, Haitham & Alsawafy, Omar, 2021. "Optimization of a solar-wind- grid powered desalination system in Saudi Arabia," Renewable Energy, Elsevier, vol. 178(C), pages 295-306.
    18. Clément Lacroix & Maxime Perier-Muzet & Driss Stitou, 2019. "Dynamic Modeling and Preliminary Performance Analysis of a New Solar Thermal Reverse Osmosis Desalination Process," Energies, MDPI, vol. 12(20), pages 1-32, October.
    19. Hongfei, Zheng & Xinshi, Ge, 2002. "Steady-state experimental study of a closed recycle solar still with enhanced falling film evaporation and regeneration," Renewable Energy, Elsevier, vol. 26(2), pages 295-308.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:11:p:4368-4374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.