IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v14y2010i9p2641-2654.html
   My bibliography  Save this article

Renewable and sustainable approaches for desalination

Author

Listed:
  • Gude, Veera Gnaneswar
  • Nirmalakhandan, Nagamany
  • Deng, Shuguang

Abstract

Freshwater and energy are essential commodities for well being of mankind. Due to increasing population growth on the one hand, and rapid industrialization on the other, today's world is facing unprecedented challenge of meeting the current needs for these two commodities as well as ensuring the needs of future generations. One approach to this global crisis of water and energy supply is to utilize renewable energy sources to produce freshwater from impaired water sources by desalination. Sustainable practices and innovative desalination technologies for water reuse and energy recovery (staging, waste heat utilization, hybridization) have the potential to reduce the stress on the existing water and energy sources with a minimal impact to the environment. This paper discusses existing and emerging desalination technologies and possible combinations of renewable energy sources to drive them and associated desalination costs. It is suggested that a holistic approach of coupling renewable energy sources with technologies for recovery, reuse, and recycle of both energy and water can be a sustainable and environment friendly approach to meet the world's energy and water needs. High capital costs for renewable energy sources for small-scale applications suggest that a hybrid energy source comprising both grid-powered energy and renewable energy will reduce the desalination costs considering present economics of energy.

Suggested Citation

  • Gude, Veera Gnaneswar & Nirmalakhandan, Nagamany & Deng, Shuguang, 2010. "Renewable and sustainable approaches for desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2641-2654, December.
  • Handle: RePEc:eee:rensus:v:14:y:2010:i:9:p:2641-2654
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(10)00155-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bourouni, K. & Martin, R. & Tadrist, L. & Chaibi, M. T., 1999. "Heat transfer and evaporation in geothermal desalination units," Applied Energy, Elsevier, vol. 64(1-4), pages 129-147, September.
    2. Richards, Bryce S & Schäfer, Andrea I, 2003. "Photovoltaic-powered desalination system for remote Australian communities," Renewable Energy, Elsevier, vol. 28(13), pages 2013-2022.
    3. Sharmila, N. & Jalihal, Purnima & Swamy, A.K. & Ravindran, M., 2004. "Wave powered desalination system," Energy, Elsevier, vol. 29(11), pages 1659-1672.
    4. Gocht, W. & Sommerfeld, A. & Rautenbach, R. & Melin, Th. & Eilers, L. & Neskakis, A. & Herold, D. & Horstmann, V. & Kabariti, M. & Muhaidat, A., 1998. "Decentralized desalination of brackish water by a directly coupled reverse-osmosis-photovoltaic-system - a pilot plant study in Jordan," Renewable Energy, Elsevier, vol. 14(1), pages 287-292.
    5. Folley, Matt & Whittaker, Trevor, 2009. "The cost of water from an autonomous wave-powered desalination plant," Renewable Energy, Elsevier, vol. 34(1), pages 75-81.
    6. Al Suleimani, Zaher & Nair, V. Rajendran, 2000. "Desalination by solar-powered reverse osmosis in a remote area of the Sultanate of Oman," Applied Energy, Elsevier, vol. 65(1-4), pages 367-380, April.
    7. Kalogirou, Soteris, 1997. "Survey of solar desalination systems and system selection," Energy, Elsevier, vol. 22(1), pages 69-81.
    8. Kalogirou, Soteris, 1998. "Use of parabolic trough solar energy collectors for sea-water desalination," Applied Energy, Elsevier, vol. 60(2), pages 65-88, June.
    9. AlMadani, H.M.N., 2003. "Water desalination by solar powered electrodialysis process," Renewable Energy, Elsevier, vol. 28(12), pages 1915-1924.
    10. Kalogirou, Soteris, 1997. "Economic analysis of a solar assisted desalination system," Renewable Energy, Elsevier, vol. 12(4), pages 351-367.
    11. Lamei, A. & van der Zaag, P. & von Münch, E., 2008. "Impact of solar energy cost on water production cost of seawater desalination plants in Egypt," Energy Policy, Elsevier, vol. 36(5), pages 1748-1756, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali, Aamer & Tufa, Ramato Ashu & Macedonio, Francesca & Curcio, Efrem & Drioli, Enrico, 2018. "Membrane technology in renewable-energy-driven desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1-21.
    2. Sharon, H. & Reddy, K.S., 2015. "A review of solar energy driven desalination technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1080-1118.
    3. Li, Sheying & Voigt, Achim & Schäfer, Andrea I. & Richards, Bryce S., 2020. "Renewable energy powered membrane technology: Energy buffering control system for improved resilience to periodic fluctuations of solar irradiance," Renewable Energy, Elsevier, vol. 149(C), pages 877-889.
    4. Eltawil, Mohamed A. & Zhengming, Zhao & Yuan, Liqiang, 2009. "A review of renewable energy technologies integrated with desalination systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2245-2262, December.
    5. Sricharan, V.V.S. & Chandrasekaran, Srinivasan, 2021. "Time-domain analysis of a bean-shaped multi-body floating wave energy converter with a hydraulic power take-off using WEC-Sim," Energy, Elsevier, vol. 223(C).
    6. Fernández-García, A. & Zarza, E. & Valenzuela, L. & Pérez, M., 2010. "Parabolic-trough solar collectors and their applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1695-1721, September.
    7. Gude, Veera Gnaneswar, 2016. "Geothermal source potential for water desalination – Current status and future perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1038-1065.
    8. Li, Chennan & Goswami, Yogi & Stefanakos, Elias, 2013. "Solar assisted sea water desalination: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 136-163.
    9. Pasquale Contestabile & Enrico Di Lauro & Paolo Galli & Cesare Corselli & Diego Vicinanza, 2017. "Offshore Wind and Wave Energy Assessment around Malè and Magoodhoo Island (Maldives)," Sustainability, MDPI, vol. 9(4), pages 1-24, April.
    10. Schallenberg-Rodríguez, Julieta & Del Rio-Gamero, Beatriz & Melian-Martel, Noemi & Lis Alecio, Tyrone & González Herrera, Javier, 2020. "Energy supply of a large size desalination plant using wave energy. Practical case: North of Gran Canaria," Applied Energy, Elsevier, vol. 278(C).
    11. Gude, Veera Gnaneswar, 2015. "Energy storage for desalination processes powered by renewable energy and waste heat sources," Applied Energy, Elsevier, vol. 137(C), pages 877-898.
    12. Zejli, Driss & Ouammi, Ahmed & Sacile, Roberto & Dagdougui, Hanane & Elmidaoui, Azzeddine, 2011. "An optimization model for a mechanical vapor compression desalination plant driven by a wind/PV hybrid system," Applied Energy, Elsevier, vol. 88(11), pages 4042-4054.
    13. Kasaeian, Alibakhsh & Rajaee, Fatemeh & Yan, Wei-Mon, 2019. "Osmotic desalination by solar energy: A critical review," Renewable Energy, Elsevier, vol. 134(C), pages 1473-1490.
    14. Calise, Francesco & Cappiello, Francesco Liberato & Vanoli, Raffaele & Vicidomini, Maria, 2019. "Economic assessment of renewable energy systems integrating photovoltaic panels, seawater desalination and water storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    15. Alghoul, M.A. & Poovanaesvaran, P. & Mohammed, M.H. & Fadhil, A.M. & Muftah, A.F. & Alkilani, M.M. & Sopian, K., 2016. "Design and experimental performance of brackish water reverse osmosis desalination unit powered by 2 kW photovoltaic system," Renewable Energy, Elsevier, vol. 93(C), pages 101-114.
    16. Sadegh Modarresi, M. & Abada, Bilal & Sivaranjani, S. & Xie, Le & Chellam, Shankararaman, 2020. "Planning of survivable nano-grids through jointly optimized water and electricity: The case of Colonias at the Texas-Mexico border," Applied Energy, Elsevier, vol. 278(C).
    17. Mohammad Akrami & Husain Alsari & Akbar A. Javadi & Mahdieh Dibaj & Raziyeh Farmani & Hassan E.S. Fath & Alaa H. Salah & Abdelazim Negm, 2020. "Analysing the Material Suitability and Concentration Ratio of a Solar-Powered Parabolic trough Collector (PTC) Using Computational Fluid Dynamics," Energies, MDPI, vol. 13(20), pages 1-17, October.
    18. Ghaithan, Ahmed M. & Al-Hanbali, Ahmad & Mohammed, Awsan & Attia, Ahmed M. & Saleh, Haitham & Alsawafy, Omar, 2021. "Optimization of a solar-wind- grid powered desalination system in Saudi Arabia," Renewable Energy, Elsevier, vol. 178(C), pages 295-306.
    19. Ali, Muhammad Tauha & Fath, Hassan E.S. & Armstrong, Peter R., 2011. "A comprehensive techno-economical review of indirect solar desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4187-4199.
    20. Khan, Meer A.M. & Rehman, S. & Al-Sulaiman, Fahad A., 2018. "A hybrid renewable energy system as a potential energy source for water desalination using reverse osmosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 456-477.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:14:y:2010:i:9:p:2641-2654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.