IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v41y2015icp1080-1118.html
   My bibliography  Save this article

A review of solar energy driven desalination technologies

Author

Listed:
  • Sharon, H.
  • Reddy, K.S.

Abstract

Water plays an important role in all our day to day activities and its consumption is increasing day by day because of increased living standards of mankind. Some regions of the globe are under severe stress due to water scarcity and pollution. The fresh water needs of mankind can be only satisfied if saline water which is available in plenty is converted to potable water by desalination. Desalination industry has shown increased threats of CO2 emissions and severe environmental impacts. Desalination industry can be made sustainable if they are integrated with renewable energy and if proper brine disposal methods are followed. In this review different desalination units integrated with renewable energy with special emphasis given to solar energy is discussed. The problems associated with desalination units and their remedies have been presented. Apart from this some novel methods of desalination process has also been explained. This review will allow the researchers to choose appropriate desalination technology for further development.

Suggested Citation

  • Sharon, H. & Reddy, K.S., 2015. "A review of solar energy driven desalination technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1080-1118.
  • Handle: RePEc:eee:rensus:v:41:y:2015:i:c:p:1080-1118
    DOI: 10.1016/j.rser.2014.09.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114007758
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.09.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manikandan, V. & Shanmugasundaram, K. & Shanmugan, S. & Janarthanan, B. & Chandrasekaran, J., 2013. "Wick type solar stills: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 322-335.
    2. Safi, M.J, 1998. "Performance of a flash desalination unit intended to be coupled to a solar pond," Renewable Energy, Elsevier, vol. 14(1), pages 339-343.
    3. Tiwari, G.N. & Yadav, Y.P. & Eames, P.C. & Norton, B., 1994. "Solar distillation systems: The state-of-the-art in design development and performance analysis," Renewable Energy, Elsevier, vol. 5(1), pages 509-516.
    4. Zejli, Driss & Ouammi, Ahmed & Sacile, Roberto & Dagdougui, Hanane & Elmidaoui, Azzeddine, 2011. "An optimization model for a mechanical vapor compression desalination plant driven by a wind/PV hybrid system," Applied Energy, Elsevier, vol. 88(11), pages 4042-4054.
    5. Narayan, G. Prakash & Sharqawy, Mostafa H. & Summers, Edward K. & Lienhard, John H. & Zubair, Syed M. & Antar, M.A., 2010. "The potential of solar-driven humidification-dehumidification desalination for small-scale decentralized water production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1187-1201, May.
    6. Ayhan, Teoman & Al Madani, Hussain, 2010. "Feasibilty study of renewable energy powered seawater desalination technology using natural vacuum technique," Renewable Energy, Elsevier, vol. 35(2), pages 506-514.
    7. Wu, Jun W. & Biggs, Mark J. & Pendleton, Philip & Badalyan, Alexander & Hu, Eric J., 2012. "Experimental implementation and validation of thermodynamic cycles of adsorption-based desalination," Applied Energy, Elsevier, vol. 98(C), pages 190-197.
    8. Alhazmy, Majed M., 2011. "Multi stage flash desalination plant with brine–feed mixing and cooling," Energy, Elsevier, vol. 36(8), pages 5225-5232.
    9. Cherif, Habib & Belhadj, Jamel, 2011. "Large-scale time evaluation for energy estimation of stand-alone hybrid photovoltaic–wind system feeding a reverse osmosis desalination unit," Energy, Elsevier, vol. 36(10), pages 6058-6067.
    10. Karellas, Sotirios & Terzis, Konstantinos & Manolakos, Dimitrios, 2011. "Investigation of an autonomous hybrid solar thermal ORC–PV RO desalination system. The Chalki island case," Renewable Energy, Elsevier, vol. 36(2), pages 583-590.
    11. Sharaf, M.A. & Nafey, A.S. & García-Rodríguez, Lourdes, 2011. "Thermo-economic analysis of solar thermal power cycles assisted MED-VC (multi effect distillation-vapor compression) desalination processes," Energy, Elsevier, vol. 36(5), pages 2753-2764.
    12. Wu, Jun W. & Hu, Eric J. & Biggs, Mark J., 2012. "Thermodynamic cycles of adsorption desalination system," Applied Energy, Elsevier, vol. 90(1), pages 316-322.
    13. Gocht, W. & Sommerfeld, A. & Rautenbach, R. & Melin, Th. & Eilers, L. & Neskakis, A. & Herold, D. & Horstmann, V. & Kabariti, M. & Muhaidat, A., 1998. "Decentralized desalination of brackish water by a directly coupled reverse-osmosis-photovoltaic-system - a pilot plant study in Jordan," Renewable Energy, Elsevier, vol. 14(1), pages 287-292.
    14. Zhani, Khalifa, 2013. "Solar desalination based on multiple effect humidification process: Thermal performance and experimental validation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 406-417.
    15. Colangelo, A. & Marano, D. & Spagna, G. & Sharma, V. K., 1999. "Photovoltaic powered reverse osmosis sea-water desalination systems," Applied Energy, Elsevier, vol. 64(1-4), pages 289-305, September.
    16. Zhani, K. & Ben Bacha, H., 2010. "Experimental investigation of a new solar desalination prototype using the humidification dehumidification principle," Renewable Energy, Elsevier, vol. 35(11), pages 2610-2617.
    17. Alhazmy, Majed M., 2009. "Feed water cooler to increase evaporation range in MSF plants," Energy, Elsevier, vol. 34(1), pages 7-13.
    18. Al Suleimani, Zaher & Nair, V. Rajendran, 2000. "Desalination by solar-powered reverse osmosis in a remote area of the Sultanate of Oman," Applied Energy, Elsevier, vol. 65(1-4), pages 367-380, April.
    19. Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
    20. AlMadani, H.M.N., 2003. "Water desalination by solar powered electrodialysis process," Renewable Energy, Elsevier, vol. 28(12), pages 1915-1924.
    21. Li, Chennan & Goswami, D. Yogi & Shapiro, Andrew & Stefanakos, Elias K. & Demirkaya, Gokmen, 2012. "A new combined power and desalination system driven by low grade heat for concentrated brine," Energy, Elsevier, vol. 46(1), pages 582-595.
    22. Shatat, Mahmoud. I.M. & Mahkamov, K., 2010. "Determination of rational design parameters of a multi-stage solar water desalination still using transient mathematical modelling," Renewable Energy, Elsevier, vol. 35(1), pages 52-61.
    23. Ali, Muhammad Tauha & Fath, Hassan E.S. & Armstrong, Peter R., 2011. "A comprehensive techno-economical review of indirect solar desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4187-4199.
    24. Gude, Veera Gnaneswar & Nirmalakhandan, Nagamany & Deng, Shuguang & Maganti, Anand, 2012. "Low temperature desalination using solar collectors augmented by thermal energy storage," Applied Energy, Elsevier, vol. 91(1), pages 466-474.
    25. Zhang, Lianying & Zheng, Hongfei & Wu, Yuyuan, 2003. "Experimental study on a horizontal tube falling film evaporation and closed circulation solar desalination system," Renewable Energy, Elsevier, vol. 28(8), pages 1187-1199.
    26. Kabeel, A.E. & Hamed, A.M. & El-Agouz, S.A., 2010. "Cost analysis of different solar still configurations," Energy, Elsevier, vol. 35(7), pages 2901-2908.
    27. Al-Qahtani, Haitham, 1996. "Feasibility of utilizing solar energy to power reverse osmosis domestic unit to desalinate water in the state of Bahrain," Renewable Energy, Elsevier, vol. 8(1), pages 500-504.
    28. Nafey, A.S. & Sharaf, M.A., 2010. "Combined solar organic Rankine cycle with reverse osmosis desalination process: Energy, exergy, and cost evaluations," Renewable Energy, Elsevier, vol. 35(11), pages 2571-2580.
    29. El-Agouz, S.A., 2010. "A new process of desalination by air passing through seawater based on humidification–dehumidification process," Energy, Elsevier, vol. 35(12), pages 5108-5114.
    30. Hrayshat, Eyad S., 2008. "Brackish water desalination by a stand alone reverse osmosis desalination unit powered by photovoltaic solar energy," Renewable Energy, Elsevier, vol. 33(8), pages 1784-1790.
    31. Jiang, Juyuan & Tian, He & Cui, Mingxian & Liu, Lijian, 2009. "Proof-of-concept study of an integrated solar desalination system," Renewable Energy, Elsevier, vol. 34(12), pages 2798-2802.
    32. Eltawil, Mohamed A. & Zhengming, Zhao & Yuan, Liqiang, 2009. "A review of renewable energy technologies integrated with desalination systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2245-2262, December.
    33. Banat, F & Jumah, R & Garaibeh, M, 2002. "Exploitation of solar energy collected by solar stills for desalination by membrane distillation," Renewable Energy, Elsevier, vol. 25(2), pages 293-305.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chennan & Goswami, Yogi & Stefanakos, Elias, 2013. "Solar assisted sea water desalination: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 136-163.
    2. Ali, Aamer & Tufa, Ramato Ashu & Macedonio, Francesca & Curcio, Efrem & Drioli, Enrico, 2018. "Membrane technology in renewable-energy-driven desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1-21.
    3. Khan, Meer A.M. & Rehman, S. & Al-Sulaiman, Fahad A., 2018. "A hybrid renewable energy system as a potential energy source for water desalination using reverse osmosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 456-477.
    4. Kasaeian, Alibakhsh & Rajaee, Fatemeh & Yan, Wei-Mon, 2019. "Osmotic desalination by solar energy: A critical review," Renewable Energy, Elsevier, vol. 134(C), pages 1473-1490.
    5. Mohamed, A.S.A. & Shahdy, Abanob G. & Mohamed, Hany A. & Ahmed, M. Salem, 2023. "A comprehensive review of the vacuum solar still systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    6. M, Chandrashekara & Yadav, Avadhesh, 2017. "Water desalination system using solar heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1308-1330.
    7. Manju, S. & Sagar, Netramani, 2017. "Renewable energy integrated desalination: A sustainable solution to overcome future fresh-water scarcity in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 594-609.
    8. Gude, Veera Gnaneswar, 2015. "Energy storage for desalination processes powered by renewable energy and waste heat sources," Applied Energy, Elsevier, vol. 137(C), pages 877-898.
    9. Carta, José A. & González, Jaime & Cabrera, Pedro & Subiela, Vicente J., 2015. "Preliminary experimental analysis of a small-scale prototype SWRO desalination plant, designed for continuous adjustment of its energy consumption to the widely varying power generated by a stand-alon," Applied Energy, Elsevier, vol. 137(C), pages 222-239.
    10. Ali, Muhammad Tauha & Fath, Hassan E.S. & Armstrong, Peter R., 2011. "A comprehensive techno-economical review of indirect solar desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4187-4199.
    11. Chen, Yih-Hang & Li, Yu-Wei & Chang, Hsuan, 2012. "Optimal design and control of solar driven air gap membrane distillation desalination systems," Applied Energy, Elsevier, vol. 100(C), pages 193-204.
    12. Fernandez-Gonzalez, C. & Dominguez-Ramos, A. & Ibañez, R. & Irabien, A., 2015. "Sustainability assessment of electrodialysis powered by photovoltaic solar energy for freshwater production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 604-615.
    13. Ahmed E. Abu El-Maaty & Mohamed M. Awad & Gamal I. Sultan & Ahmed M. Hamed, 2023. "Innovative Approaches to Solar Desalination: A Comprehensive Review of Recent Research," Energies, MDPI, vol. 16(9), pages 1-31, May.
    14. El-Agouz, S.A. & Abd El-Aziz, G.B. & Awad, A.M., 2014. "Solar desalination system using spray evaporation," Energy, Elsevier, vol. 76(C), pages 276-283.
    15. Shalaby, S.M., 2017. "Reverse osmosis desalination powered by photovoltaic and solar Rankine cycle power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 789-797.
    16. Li, Chennan & Goswami, D. Yogi & Shapiro, Andrew & Stefanakos, Elias K. & Demirkaya, Gokmen, 2012. "A new combined power and desalination system driven by low grade heat for concentrated brine," Energy, Elsevier, vol. 46(1), pages 582-595.
    17. Zejli, Driss & Ouammi, Ahmed & Sacile, Roberto & Dagdougui, Hanane & Elmidaoui, Azzeddine, 2011. "An optimization model for a mechanical vapor compression desalination plant driven by a wind/PV hybrid system," Applied Energy, Elsevier, vol. 88(11), pages 4042-4054.
    18. Qureshi, Bilal Ahmed & Zubair, Syed M., 2015. "Exergetic analysis of a brackish water reverse osmosis desalination unit with various energy recovery systems," Energy, Elsevier, vol. 93(P1), pages 256-265.
    19. Calise, Francesco & Cappiello, Francesco Liberato & Vanoli, Raffaele & Vicidomini, Maria, 2019. "Economic assessment of renewable energy systems integrating photovoltaic panels, seawater desalination and water storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    20. Gude, Veera Gnaneswar & Nirmalakhandan, Nagamany & Deng, Shuguang, 2010. "Renewable and sustainable approaches for desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2641-2654, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:41:y:2015:i:c:p:1080-1118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.