IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i10p6058-6067.html
   My bibliography  Save this article

Large-scale time evaluation for energy estimation of stand-alone hybrid photovoltaic–wind system feeding a reverse osmosis desalination unit

Author

Listed:
  • Cherif, Habib
  • Belhadj, Jamel

Abstract

In this study, energy and water production estimation on a large-scale time from Photovoltaic–Wind hybrid system coupled to a reverse osmosis desalination unit in southern Tunisia has been elaborated. The use of a hybrid system for desalination appears nowadays as a very promising solution for remote and arid areas. The produced energy is used for potable water production. For energy production, metrological data (wind speed, solar irradiance…) and steady-state models have been used. The obtained results show that the hybrid solution (solar and wind) gives an energy availability during the year, despite changing energy according to daytime, season and year. The reverse osmosis desalination unit powered by Photovoltaic–Wind hybrid system for producing potable water from brackish water is an appropriate solution to southern Tunisia (salinity about 6g/l). For this, compositions of brackish feed water in Djerba region were selected. Double stage configuration in the desalination process using spiral modules is adopted extensively and validation of the steady-state models is presented.

Suggested Citation

  • Cherif, Habib & Belhadj, Jamel, 2011. "Large-scale time evaluation for energy estimation of stand-alone hybrid photovoltaic–wind system feeding a reverse osmosis desalination unit," Energy, Elsevier, vol. 36(10), pages 6058-6067.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:10:p:6058-6067
    DOI: 10.1016/j.energy.2011.08.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211005408
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.08.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ekren, Orhan & Ekren, Banu Y. & Ozerdem, Baris, 2009. "Break-even analysis and size optimization of a PV/wind hybrid energy conversion system with battery storage - A case study," Applied Energy, Elsevier, vol. 86(7-8), pages 1043-1054, July.
    2. Ashok, S., 2007. "Optimised model for community-based hybrid energy system," Renewable Energy, Elsevier, vol. 32(7), pages 1155-1164.
    3. Liu, Li-qun & Wang, Zhi-xin, 2009. "The development and application practice of wind-solar energy hybrid generation systems in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1504-1512, August.
    4. Dali, Mehdi & Belhadj, Jamel & Roboam, Xavier, 2010. "Hybrid solar–wind system with battery storage operating in grid-connected and standalone mode: Control and energy management – Experimental investigation," Energy, Elsevier, vol. 35(6), pages 2587-2595.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Wei & Wang, Yang & Shaheed, Mohammad Hasan, 2015. "Stand-alone seawater RO (reverse osmosis) desalination powered by PV (photovoltaic) and PRO (pressure retarded osmosis)," Energy, Elsevier, vol. 86(C), pages 423-435.
    2. Kim, Jong Suk & Chen, Jun & Garcia, Humberto E., 2016. "Modeling, control, and dynamic performance analysis of a reverse osmosis desalination plant integrated within hybrid energy systems," Energy, Elsevier, vol. 112(C), pages 52-66.
    3. Ghaithan, Ahmed M. & Mohammed, Awsan & Al-Hanbali, Ahmad & Attia, Ahmed M. & Saleh, Haitham, 2022. "Multi-objective optimization of a photovoltaic-wind- grid connected system to power reverse osmosis desalination plant," Energy, Elsevier, vol. 251(C).
    4. Lee, Sangkeum & Cho, Hong-Yeon & Har, Dongsoo, 2018. "Operation optimization with jointly controlled modules powered by hybrid energy source: A case study of desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3070-3080.
    5. Sabo, Mahmoud Lurwan & Mariun, Norman & Hizam, Hashim & Mohd Radzi, Mohd Amran & Zakaria, Azmi, 2017. "Spatial matching of large-scale grid-connected photovoltaic power generation with utility demand in Peninsular Malaysia," Applied Energy, Elsevier, vol. 191(C), pages 663-688.
    6. Sharon, H. & Reddy, K.S., 2015. "A review of solar energy driven desalination technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1080-1118.
    7. Maleki, Akbar & Khajeh, Morteza Gholipour & Rosen, Marc A., 2016. "Weather forecasting for optimization of a hybrid solar-wind–powered reverse osmosis water desalination system using a novel optimizer approach," Energy, Elsevier, vol. 114(C), pages 1120-1134.
    8. Khan, Meer A.M. & Rehman, S. & Al-Sulaiman, Fahad A., 2018. "A hybrid renewable energy system as a potential energy source for water desalination using reverse osmosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 456-477.
    9. Ali, Aamer & Tufa, Ramato Ashu & Macedonio, Francesca & Curcio, Efrem & Drioli, Enrico, 2018. "Membrane technology in renewable-energy-driven desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1-21.
    10. Luis Acevedo & Javier Uche & Alejandro Del Almo & Fernando Círez & Sergio Usón & Amaya Martínez & Isabel Guedea, 2016. "Dynamic Simulation of a Trigeneration Scheme for Domestic Purposes Based on Hybrid Techniques," Energies, MDPI, vol. 9(12), pages 1-25, November.
    11. Qureshi, Bilal Ahmed & Zubair, Syed M., 2015. "Exergetic analysis of a brackish water reverse osmosis desalination unit with various energy recovery systems," Energy, Elsevier, vol. 93(P1), pages 256-265.
    12. Garcia, Humberto E. & Mohanty, Amit & Lin, Wen-Chiao & Cherry, Robert S., 2013. "Dynamic analysis of hybrid energy systems under flexible operation and variable renewable generation – Part I: Dynamic performance analysis," Energy, Elsevier, vol. 52(C), pages 1-16.
    13. Wissem, Zghal & Gueorgui, Kantchev & Hédi, Kchaou, 2012. "Modeling and technical–economic optimization of an autonomous photovoltaic system," Energy, Elsevier, vol. 37(1), pages 263-272.
    14. Li, Chennan & Goswami, D. Yogi & Shapiro, Andrew & Stefanakos, Elias K. & Demirkaya, Gokmen, 2012. "A new combined power and desalination system driven by low grade heat for concentrated brine," Energy, Elsevier, vol. 46(1), pages 582-595.
    15. Singh, G.K., 2013. "Solar power generation by PV (photovoltaic) technology: A review," Energy, Elsevier, vol. 53(C), pages 1-13.
    16. Gonzalez, Alonso & Grágeda, Mario & Ushak, Svetlana, 2017. "Assessment of pilot-scale water purification module with electrodialysis technology and solar energy," Applied Energy, Elsevier, vol. 206(C), pages 1643-1652.
    17. Uche, J. & Círez, F. & Bayod, A.A. & Martínez, A., 2013. "On-grid and off-grid batch-ED (electrodialysis) process: Simulation and experimental tests," Energy, Elsevier, vol. 57(C), pages 44-54.
    18. Chen, Cheng-Chuan & Chang, Hong-Chan & Kuo, Cheng-Chien & Lin, Chien-Chin, 2013. "Programmable energy source emulator for photovoltaic panels considering partial shadow effect," Energy, Elsevier, vol. 54(C), pages 174-183.
    19. Soleimanzade, Mohammad Amin & Sadrzadeh, Mohtada, 2021. "Deep learning-based energy management of a hybrid photovoltaic-reverse osmosis-pressure retarded osmosis system," Applied Energy, Elsevier, vol. 293(C).
    20. Uche, J. & Muzás, A. & Acevedo, L.E. & Usón, S. & Martínez, A. & Bayod, A.A., 2020. "Experimental tests to validate the simulation model of a Domestic Trigeneration Scheme with hybrid RESs and Desalting Techniques," Renewable Energy, Elsevier, vol. 155(C), pages 407-419.
    21. Cherif, Habib & Champenois, Gérard & Belhadj, Jamel, 2016. "Environmental life cycle analysis of a water pumping and desalination process powered by intermittent renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1504-1513.
    22. Acuña, Luceny Guzmán & Padilla, Ricardo Vasquez & Mercado, Alcides Santander, 2017. "Measuring reliability of hybrid photovoltaic-wind energy systems: A new indicator," Renewable Energy, Elsevier, vol. 106(C), pages 68-77.
    23. Zhang, Hao & Lai, Yanhua & Yang, Xiao & Li, Chang & Dong, Yong, 2022. "Non-evaporative solvent extraction technology applied to water and heat recovery from low-temperature flue gas: Parametric analysis and feasibility evaluation," Energy, Elsevier, vol. 244(PB).
    24. Hassan, Qusay, 2021. "Evaluation and optimization of off-grid and on-grid photovoltaic power system for typical household electrification," Renewable Energy, Elsevier, vol. 164(C), pages 375-390.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Selin Kocaman, Ayse & Abad, Carlos & Troy, Tara J. & Tim Huh, Woonghee & Modi, Vijay, 2016. "A stochastic model for a macroscale hybrid renewable energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 688-703.
    2. Hiendro, Ayong & Kurnianto, Rudi & Rajagukguk, Managam & Simanjuntak, Yohannes M. & Junaidi,, 2013. "Techno-economic analysis of photovoltaic/wind hybrid system for onshore/remote area in Indonesia," Energy, Elsevier, vol. 59(C), pages 652-657.
    3. Ekren, Orhan & Ekren, Banu Y., 2010. "Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing," Applied Energy, Elsevier, vol. 87(2), pages 592-598, February.
    4. Edwin, M. & Joseph Sekhar, S., 2018. "Techno- Economic evaluation of milk chilling unit retrofitted with hybrid renewable energy system in coastal province," Energy, Elsevier, vol. 151(C), pages 66-78.
    5. Khan, Mohammad Junaid & Yadav, Amit Kumar & Mathew, Lini, 2017. "Techno economic feasibility analysis of different combinations of PV-Wind-Diesel-Battery hybrid system for telecommunication applications in different cities of Punjab, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 577-607.
    6. Yanine, Franco F. & Sauma, Enzo E., 2013. "Review of grid-tie micro-generation systems without energy storage: Towards a new approach to sustainable hybrid energy systems linked to energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 60-95.
    7. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    8. Acuña, Luceny Guzmán & Padilla, Ricardo Vasquez & Mercado, Alcides Santander, 2017. "Measuring reliability of hybrid photovoltaic-wind energy systems: A new indicator," Renewable Energy, Elsevier, vol. 106(C), pages 68-77.
    9. Jing Huang & John Boland, 2018. "Performance Analysis for One-Step-Ahead Forecasting of Hybrid Solar and Wind Energy on Short Time Scales," Energies, MDPI, vol. 11(5), pages 1-12, May.
    10. Rajanna, S. & Saini, R.P., 2016. "Modeling of integrated renewable energy system for electrification of a remote area in India," Renewable Energy, Elsevier, vol. 90(C), pages 175-187.
    11. Chang, Pao-Long & Ho, Shu-Ping & Hsu, Chiung-Wen, 2013. "Dynamic simulation of government subsidy policy effects on solar water heaters installation in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 385-396.
    12. Vermaak, Herman Jacobus & Kusakana, Kanzumba & Koko, Sandile Philip, 2014. "Status of micro-hydrokinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 625-633.
    13. Ghorbanzadeh, Milad & Astaneh, Majid & Golzar, Farzin, 2019. "Long-term degradation based analysis for lithium-ion batteries in off-grid wind-battery renewable energy systems," Energy, Elsevier, vol. 166(C), pages 1194-1206.
    14. Klein, Sharon J.W. & Coffey, Stephanie, 2016. "Building a sustainable energy future, one community at a time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 867-880.
    15. Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2015. "Hierarchical methodology to optimize the design of stand-alone electrification systems for rural communities considering technical and social criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 182-196.
    16. Banguero, Edison & Correcher, Antonio & Pérez-Navarro, Ángel & García, Emilio & Aristizabal, Andrés, 2020. "Diagnosis of a battery energy storage system based on principal component analysis," Renewable Energy, Elsevier, vol. 146(C), pages 2438-2449.
    17. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    18. Liang, Yushi & Wu, Chunbing & Ji, Xiaodong & Zhang, Mulan & Li, Yiran & He, Jianjun & Qin, Zhiheng, 2022. "Estimation of the influences of spatiotemporal variations in air density on wind energy assessment in China based on deep neural network," Energy, Elsevier, vol. 239(PC).
    19. Parwal, Arvind & Fregelius, Martin & Temiz, Irinia & Göteman, Malin & Oliveira, Janaina G. de & Boström, Cecilia & Leijon, Mats, 2018. "Energy management for a grid-connected wave energy park through a hybrid energy storage system," Applied Energy, Elsevier, vol. 231(C), pages 399-411.
    20. Pérez-Navarro, A. & Alfonso, D. & Álvarez, C. & Ibáñez, F. & Sánchez, C. & Segura, I., 2010. "Hybrid biomass-wind power plant for reliable energy generation," Renewable Energy, Elsevier, vol. 35(7), pages 1436-1443.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:10:p:6058-6067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.