IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v54y2016icp688-703.html
   My bibliography  Save this article

A stochastic model for a macroscale hybrid renewable energy system

Author

Listed:
  • Selin Kocaman, Ayse
  • Abad, Carlos
  • Troy, Tara J.
  • Tim Huh, Woonghee
  • Modi, Vijay

Abstract

The current supply for electricity generation mostly relies on fossil fuels, which are finite and pose a great threat to the environment. Therefore, energy models that involve clean and renewable energy sources are necessary to ease the concerns about the electricity generation needed to meet the projected demand. Here, we mathematically model a hybrid energy generation and allocation system where the intermittent solar generation is supported by conventional hydropower stations and diesel generation and time variability of the sources are balanced using the water stored in the reservoirs. We develop a two-stage stochastic model to capture the effect of streamflows which present significant inter-annual variability and uncertainty. Using sample case studies from India, we determine the required hydropower generation capacity and storage along with the minimal diesel usage to support 1GWpeak solar power generation. We compare isolated systems with the connected systems (through inter-regional transmission) to see the effects of geographic diversity on the infrastructure sizing and quantify the benefits of resource-sharing. We develop the optimal sizing relationship between solar and hydropower generation capacities given realistic cost parameters and real data and examine how this relationship would differ as the contribution of diesel is reduced. We also show that if the output of the solar power stations can be controlled (i.e. spill is allowed in our setting), operating them below their maximum energy generation levels may reduce the unit cost of the system.

Suggested Citation

  • Selin Kocaman, Ayse & Abad, Carlos & Troy, Tara J. & Tim Huh, Woonghee & Modi, Vijay, 2016. "A stochastic model for a macroscale hybrid renewable energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 688-703.
  • Handle: RePEc:eee:rensus:v:54:y:2016:i:c:p:688-703
    DOI: 10.1016/j.rser.2015.10.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115010795
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.10.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernando Ruiz-Mier & Meike van Ginneken, 2008. "India's Water Economy : Bracing for a Turbulent Future," World Bank Publications - Reports 11764, The World Bank Group.
    2. Ekholm, Tommi & Krey, Volker & Pachauri, Shonali & Riahi, Keywan, 2010. "Determinants of household energy consumption in India," Energy Policy, Elsevier, vol. 38(10), pages 5696-5707, October.
    3. Wu, Felix & Varaiya, Pravin & Spiller, Pablo & Oren, Shmuel, 1996. "Folk Theorems on Transmission Access: Proofs and Counterexamples," Journal of Regulatory Economics, Springer, vol. 10(1), pages 5-23, July.
    4. Ekren, Orhan & Ekren, Banu Y., 2010. "Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing," Applied Energy, Elsevier, vol. 87(2), pages 592-598, February.
    5. Keller, A. & Sakthivadivel, R. & Seckler, D., 2000. "Water scarcity and the role of storage in development," IWMI Research Reports H026190, International Water Management Institute.
    6. Kocaman, Ayse Selin & Huh, Woonghee Tim & Modi, Vijay, 2012. "Initial layout of power distribution systems for rural electrification: A heuristic algorithm for multilevel network design," Applied Energy, Elsevier, vol. 96(C), pages 302-315.
    7. Ekren, Orhan & Ekren, Banu Y. & Ozerdem, Baris, 2009. "Break-even analysis and size optimization of a PV/wind hybrid energy conversion system with battery storage - A case study," Applied Energy, Elsevier, vol. 86(7-8), pages 1043-1054, July.
    8. Mallah, Subhash & Bansal, N.K., 2010. "Allocation of energy resources for power generation in India: Business as usual and energy efficiency," Energy Policy, Elsevier, vol. 38(2), pages 1059-1066, February.
    9. Ludwig Kuznia & Bo Zeng & Grisselle Centeno & Zhixin Miao, 2013. "Stochastic optimization for power system configuration with renewable energy in remote areas," Annals of Operations Research, Springer, vol. 210(1), pages 411-432, November.
    10. Lamont, Alan D., 2008. "Assessing the long-term system value of intermittent electric generation technologies," Energy Economics, Elsevier, vol. 30(3), pages 1208-1231, May.
    11. Zvoleff, Alex & Kocaman, Ayse Selin & Huh, Woonghee Tim & Modi, Vijay, 2009. "The impact of geography on energy infrastructure costs," Energy Policy, Elsevier, vol. 37(10), pages 4066-4078, October.
    12. Sanoh, Aly & Kocaman, Ayse Selin & Kocal, Selcuk & Sherpa, Shaky & Modi, Vijay, 2014. "The economics of clean energy resource development and grid interconnection in Africa," Renewable Energy, Elsevier, vol. 62(C), pages 598-609.
    13. Ashok, S., 2007. "Optimised model for community-based hybrid energy system," Renewable Energy, Elsevier, vol. 32(7), pages 1155-1164.
    14. Suganthi, L. & Williams, A., 2000. "Renewable energy in India -- a modelling study for 2020-2021," Energy Policy, Elsevier, vol. 28(15), pages 1095-1109, December.
    15. Shripad Dharmadhikary, 2008. "Mountains of Concrete: Dam Building in the Himalayas," Working Papers id:1815, eSocialSciences.
    16. Cormio, C. & Dicorato, M. & Minoia, A. & Trovato, M., 2003. "A regional energy planning methodology including renewable energy sources and environmental constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(2), pages 99-130, April.
    17. Parida, Bhubaneswari & Iniyan, S. & Goic, Ranko, 2011. "A review of solar photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1625-1636, April.
    18. Khan, M.J. & Iqbal, M.T., 2005. "Pre-feasibility study of stand-alone hybrid energy systems for applications in Newfoundland," Renewable Energy, Elsevier, vol. 30(6), pages 835-854.
    19. Nock, Destenie & Krishnan, Venkat & McCalley, James D., 2014. "Dispatching intermittent wind resources for ancillary services via wind control and its impact on power system economics," Renewable Energy, Elsevier, vol. 71(C), pages 396-400.
    20. Mousazadeh, Hossein & Keyhani, Alireza & Javadi, Arzhang & Mobli, Hossein & Abrinia, Karen & Sharifi, Ahmad, 2009. "A review of principle and sun-tracking methods for maximizing solar systems output," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1800-1818, October.
    21. Krishnan, Venkat & McCalley, James D. & Lemos, Santiago & Bushnell, James, 2013. "Nation-wide transmission overlay design and benefits assessment for the U.S," Energy Policy, Elsevier, vol. 56(C), pages 221-232.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen-Tao Su & Wei Zhao & Maxime Binama & Yue Zhao & Jian-Ying Huang & Xue-Ren Chen, 2022. "Experimental Francis Turbine Cavitation Performances of a Hydro-Energy Plant," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    2. Gerardo J. Osório & Miadreza Shafie-khah & Mohamed Lotfi & Bernardo J. M. Ferreira-Silva & João P. S. Catalão, 2019. "Demand-Side Management of Smart Distribution Grids Incorporating Renewable Energy Sources," Energies, MDPI, vol. 12(1), pages 1-23, January.
    3. Kocaman, Ayse Selin & Modi, Vijay, 2017. "Value of pumped hydro storage in a hybrid energy generation and allocation system," Applied Energy, Elsevier, vol. 205(C), pages 1202-1215.
    4. Nie, S. & Li, Y.P. & Liu, J. & Huang, Charley Z., 2017. "Risk management of energy system for identifying optimal power mix with financial-cost minimization and environmental-impact mitigation under uncertainty," Energy Economics, Elsevier, vol. 61(C), pages 313-329.
    5. Kocaman, Ayse Selin & Ozyoruk, Emin & Taneja, Shantanu & Modi, Vijay, 2020. "A stochastic framework to evaluate the impact of agricultural load flexibility on the sizing of renewable energy systems," Renewable Energy, Elsevier, vol. 152(C), pages 1067-1078.
    6. Yuan, Shengxi & Kocaman, Ayse Selin & Modi, Vijay, 2017. "Benefits of forecasting and energy storage in isolated grids with large wind penetration – The case of Sao Vicente," Renewable Energy, Elsevier, vol. 105(C), pages 167-174.
    7. Ak, Mumtaz & Kentel, Elcin & Savasaneril, Secil, 2017. "Operating policies for energy generation and revenue management in single-reservoir hydropower systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1253-1261.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    2. Mudasser, Muhammad & Yiridoe, Emmanuel K. & Corscadden, Kenneth, 2015. "Cost-benefit analysis of grid-connected wind–biogas hybrid energy production, by turbine capacity and site," Renewable Energy, Elsevier, vol. 80(C), pages 573-582.
    3. Mahesh, Aeidapu & Sandhu, Kanwarjit Singh, 2015. "Hybrid wind/photovoltaic energy system developments: Critical review and findings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1135-1147.
    4. Edwin, M. & Joseph Sekhar, S., 2018. "Techno- Economic evaluation of milk chilling unit retrofitted with hybrid renewable energy system in coastal province," Energy, Elsevier, vol. 151(C), pages 66-78.
    5. Sanajaoba, Sarangthem & Fernandez, Eugene, 2016. "Maiden application of Cuckoo Search algorithm for optimal sizing of a remote hybrid renewable energy System," Renewable Energy, Elsevier, vol. 96(PA), pages 1-10.
    6. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Lin, Q.G. & Tan, Q., 2009. "Community-scale renewable energy systems planning under uncertainty--An interval chance-constrained programming approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 721-735, May.
    7. Perera, A.T.D. & Attalage, R.A. & Perera, K.K.C.K. & Dassanayake, V.P.C., 2013. "Designing standalone hybrid energy systems minimizing initial investment, life cycle cost and pollutant emission," Energy, Elsevier, vol. 54(C), pages 220-230.
    8. Arnette, Andrew & Zobel, Christopher W., 2012. "An optimization model for regional renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4606-4615.
    9. Yasemin Merzifonluoglu & Eray Uzgoren, 2018. "Photovoltaic power plant design considering multiple uncertainties and risk," Annals of Operations Research, Springer, vol. 262(1), pages 153-184, March.
    10. Rajanna, S. & Saini, R.P., 2016. "Modeling of integrated renewable energy system for electrification of a remote area in India," Renewable Energy, Elsevier, vol. 90(C), pages 175-187.
    11. Batas Bjelic, Ilija & Ciric, Rade M., 2014. "Optimal distributed generation planning at a local level – A review of Serbian renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 79-86.
    12. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    13. Sinha, Sunanda & Chandel, S.S., 2015. "Review of recent trends in optimization techniques for solar photovoltaic–wind based hybrid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 755-769.
    14. Khatib, Tamer & Mohamed, Azah & Sopian, K., 2013. "A review of photovoltaic systems size optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 454-465.
    15. Mahelet G. Fikru & Gregory Gelles & Ana-Maria Ichim & Joseph D. Smith, 2019. "Notes on the Economics of Residential Hybrid Energy System," Energies, MDPI, vol. 12(14), pages 1-18, July.
    16. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    17. Sharma, Naveen & Varun, & Siddhartha,, 2012. "Stochastic techniques used for optimization in solar systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1399-1411.
    18. Bolukbasi, Gizem & Kocaman, Ayse Selin, 2018. "A prize collecting Steiner tree approach to least cost evaluation of grid and off-grid electrification systems," Energy, Elsevier, vol. 160(C), pages 536-543.
    19. Chen, Hung-Cheng, 2013. "Optimum capacity determination of stand-alone hybrid generation system considering cost and reliability," Applied Energy, Elsevier, vol. 103(C), pages 155-164.
    20. Pablo Benalcazar & Adam Suski & Jacek Kamiński, 2020. "Optimal Sizing and Scheduling of Hybrid Energy Systems: The Cases of Morona Santiago and the Galapagos Islands," Energies, MDPI, vol. 13(15), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:54:y:2016:i:c:p:688-703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.