IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v71y2014icp396-400.html
   My bibliography  Save this article

Dispatching intermittent wind resources for ancillary services via wind control and its impact on power system economics

Author

Listed:
  • Nock, Destenie
  • Krishnan, Venkat
  • McCalley, James D.

Abstract

This paper focuses on assessing the effectiveness of wind control methods used to address the economic issues associated with higher penetration of variable (wind) generation. Two different wind control methods were implemented, namely maximum power limitation and delta control. Production costing simulations were done on IEEE 24 bus system with three wind farms, across different wind penetration levels to evaluate the impacts of wind control methods. Wind farms were allowed to participate in the ancillary service market while implementing the variable delta control. Results showed that these control methods have the potential to allow wind farm provide regulation or significantly lower regulation requirements, and reduce the overall production cost of the power system.

Suggested Citation

  • Nock, Destenie & Krishnan, Venkat & McCalley, James D., 2014. "Dispatching intermittent wind resources for ancillary services via wind control and its impact on power system economics," Renewable Energy, Elsevier, vol. 71(C), pages 396-400.
  • Handle: RePEc:eee:renene:v:71:y:2014:i:c:p:396-400
    DOI: 10.1016/j.renene.2014.05.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114003334
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.05.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergio Martín‐Martínez & Alberto Lorenzo‐Bonache & Andrés Honrubia‐Escribano & Miguel Cañas‐Carretón & Emilio Gómez‐Lázaro, 2018. "Contribution of wind energy to balancing markets: The case of Spain," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(5), September.
    2. Selin Kocaman, Ayse & Abad, Carlos & Troy, Tara J. & Tim Huh, Woonghee & Modi, Vijay, 2016. "A stochastic model for a macroscale hybrid renewable energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 688-703.
    3. Yin, Guangzhi & Duan, Maosheng, 2022. "Pricing the deep peak regulation service of coal-fired power plants to promote renewable energy integration," Applied Energy, Elsevier, vol. 321(C).
    4. Ramirez, Dionisio & Martinez-Rodrigo, Fernando & de Pablo, Santiago & Carlos Herrero-de Lucas, Luis, 2017. "Assessment of a non linear current control technique applied to MMC-HVDC during grid disturbances," Renewable Energy, Elsevier, vol. 101(C), pages 945-963.
    5. Krishnan, Venkat & Das, Trishna, 2015. "Optimal allocation of energy storage in a co-optimized electricity market: Benefits assessment and deriving indicators for economic storage ventures," Energy, Elsevier, vol. 81(C), pages 175-188.
    6. Hu, Junfeng & Yan, Qingyou & Kahrl, Fredrich & Liu, Xu & Wang, Peng & Lin, Jiang, 2021. "Evaluating the ancillary services market for large-scale renewable energy integration in China's northeastern power grid," Utilities Policy, Elsevier, vol. 69(C).
    7. Nikolakakis, Thomas & Chattopadhyay, Deb & Bazilian, Morgan, 2017. "A review of renewable investment and power system operational issues in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 650-658.
    8. Pousinho, H.M.I. & Esteves, J. & Mendes, V.M.F. & Collares-Pereira, M. & Pereira Cabrita, C., 2016. "Bilevel approach to wind-CSP day-ahead scheduling with spinning reserve under controllable degree of trust," Renewable Energy, Elsevier, vol. 85(C), pages 917-927.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:71:y:2014:i:c:p:396-400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.