IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v134y2019icp1473-1490.html
   My bibliography  Save this article

Osmotic desalination by solar energy: A critical review

Author

Listed:
  • Kasaeian, Alibakhsh
  • Rajaee, Fatemeh
  • Yan, Wei-Mon

Abstract

This review deals with the membrane desalination techniques, reverse and forward osmosis, run by solar energy. Photovoltaic panels and solar thermal collectors are favorable substitutes for fossil fuels, which are being plundered and cause climate changes. The present paper provides its readers with a novel classification of previous works on membrane methods and the kinds of collectors, which shed light on the significant role of solar energy and systems as green renewable energy in producing drinking water for human beings. The photovoltaic-integrated reverse osmosis systems are advocated by 53% percent of all articles. In addition, energy, exergy, and techno-economic analyses have been done under various conditions. The optimized and modified designs of reverse osmosis, powered by solar thermal collectors, make the systems greatly expanded the entire world. From another side, the capability of forward osmosis (FO) to provide potable water provokes researchers to investigate the ambiguities about the influence of solar collectors on the system performance and water production cost. Nevertheless, the efforts continue to retrofit FO, the number of papers is not sufficient, and the wide field of the subjects about solar forward osmosis has not been covered yet.

Suggested Citation

  • Kasaeian, Alibakhsh & Rajaee, Fatemeh & Yan, Wei-Mon, 2019. "Osmotic desalination by solar energy: A critical review," Renewable Energy, Elsevier, vol. 134(C), pages 1473-1490.
  • Handle: RePEc:eee:renene:v:134:y:2019:i:c:p:1473-1490
    DOI: 10.1016/j.renene.2018.09.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118311017
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.09.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tchanche, B.F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2010. "Exergy analysis of micro-organic Rankine power cycles for a small scale solar driven reverse osmosis desalination system," Applied Energy, Elsevier, vol. 87(4), pages 1295-1306, April.
    2. Kosmadakis, G. & Manolakos, D. & Kyritsis, S. & Papadakis, G., 2009. "Economic assessment of a two-stage solar organic Rankine cycle for reverse osmosis desalination," Renewable Energy, Elsevier, vol. 34(6), pages 1579-1586.
    3. Ghaffour, Noreddine & Lattemann, Sabine & Missimer, Thomas & Ng, Kim Choon & Sinha, Shahnawaz & Amy, Gary, 2014. "Renewable energy-driven innovative energy-efficient desalination technologies," Applied Energy, Elsevier, vol. 136(C), pages 1155-1165.
    4. Shalaby, S.M., 2017. "Reverse osmosis desalination powered by photovoltaic and solar Rankine cycle power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 789-797.
    5. Qiblawey, Hazim & Banat, Fawzi & Al-Nasser, Qais, 2011. "Performance of reverse osmosis pilot plant powered by Photovoltaic in Jordan," Renewable Energy, Elsevier, vol. 36(12), pages 3452-3460.
    6. Janghorban Esfahani, Iman & Yoo, ChangKyoo, 2016. "An optimization algorithm-based pinch analysis and GA for an off-grid batteryless photovoltaic-powered reverse osmosis desalination system," Renewable Energy, Elsevier, vol. 91(C), pages 233-248.
    7. Bilton, Amy M. & Wiesman, Richard & Arif, A.F.M. & Zubair, Syed M. & Dubowsky, Steven, 2011. "On the feasibility of community-scale photovoltaic-powered reverse osmosis desalination systems for remote locations," Renewable Energy, Elsevier, vol. 36(12), pages 3246-3256.
    8. Kalogirou, S.A. & Mathioulakis, E. & Belessiotis, V., 2014. "Artificial neural networks for the performance prediction of large solar systems," Renewable Energy, Elsevier, vol. 63(C), pages 90-97.
    9. Al Suleimani, Zaher & Nair, V. Rajendran, 2000. "Desalination by solar-powered reverse osmosis in a remote area of the Sultanate of Oman," Applied Energy, Elsevier, vol. 65(1-4), pages 367-380, April.
    10. Gandhidasan, P. & Al-Mojel, Sultan A., 2009. "Effect of feed pressure on the performance of the photovoltaic powered reverse osmosis seawater desalination system," Renewable Energy, Elsevier, vol. 34(12), pages 2824-2830.
    11. Mellit, A. & Kalogirou, S.A. & Shaari, S. & Salhi, H. & Hadj Arab, A., 2008. "Methodology for predicting sequences of mean monthly clearness index and daily solar radiation data in remote areas: Application for sizing a stand-alone PV system," Renewable Energy, Elsevier, vol. 33(7), pages 1570-1590.
    12. Nafey, A.S. & Sharaf, M.A., 2010. "Combined solar organic Rankine cycle with reverse osmosis desalination process: Energy, exergy, and cost evaluations," Renewable Energy, Elsevier, vol. 35(11), pages 2571-2580.
    13. Ahmad, Naseer & Sheikh, Anwar K. & Gandhidasan, P. & Elshafie, Moustafa, 2015. "Modeling, simulation and performance evaluation of a community scale PVRO water desalination system operated by fixed and tracking PV panels: A case study for Dhahran city, Saudi Arabia," Renewable Energy, Elsevier, vol. 75(C), pages 433-447.
    14. Hrayshat, Eyad S., 2008. "Brackish water desalination by a stand alone reverse osmosis desalination unit powered by photovoltaic solar energy," Renewable Energy, Elsevier, vol. 33(8), pages 1784-1790.
    15. He, Wei & Wang, Yang & Shaheed, Mohammad Hasan, 2015. "Stand-alone seawater RO (reverse osmosis) desalination powered by PV (photovoltaic) and PRO (pressure retarded osmosis)," Energy, Elsevier, vol. 86(C), pages 423-435.
    16. Li, Zhenyu & Siddiqi, Afreen & Anadon, Laura Diaz & Narayanamurti, Venkatesh, 2018. "Towards sustainability in water-energy nexus: Ocean energy for seawater desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3833-3847.
    17. Chang, Hsuan & Wang, Gow-Bin & Chen, Yih-Hang & Li, Chien-Chang & Chang, Cheng-Liang, 2010. "Modeling and optimization of a solar driven membrane distillation desalination system," Renewable Energy, Elsevier, vol. 35(12), pages 2714-2722.
    18. Antipova, Ekaterina & Boer, Dieter & Cabeza, Luisa F. & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano, 2013. "Multi-objective design of reverse osmosis plants integrated with solar Rankine cycles and thermal energy storage," Applied Energy, Elsevier, vol. 102(C), pages 1137-1147.
    19. Xia, Guanghui & Sun, Qingxuan & Cao, Xu & Wang, Jiangfeng & Yu, Yizhao & Wang, Laisheng, 2014. "Thermodynamic analysis and optimization of a solar-powered transcritical CO2 (carbon dioxide) power cycle for reverse osmosis desalination based on the recovery of cryogenic energy of LNG (liquefied n," Energy, Elsevier, vol. 66(C), pages 643-653.
    20. Kong, Chengdong & Xu, Zilin & Yao, Qiang, 2013. "Outdoor performance of a low-concentrated photovoltaic–thermal hybrid system with crystalline silicon solar cells," Applied Energy, Elsevier, vol. 112(C), pages 618-625.
    21. Alghoul, M.A. & Poovanaesvaran, P. & Mohammed, M.H. & Fadhil, A.M. & Muftah, A.F. & Alkilani, M.M. & Sopian, K., 2016. "Design and experimental performance of brackish water reverse osmosis desalination unit powered by 2 kW photovoltaic system," Renewable Energy, Elsevier, vol. 93(C), pages 101-114.
    22. Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
    23. Pugsley, Adrian & Zacharopoulos, Aggelos & Mondol, Jayanta Deb & Smyth, Mervyn, 2016. "Global applicability of solar desalination," Renewable Energy, Elsevier, vol. 88(C), pages 200-219.
    24. Ali, Muhammad Tauha & Fath, Hassan E.S. & Armstrong, Peter R., 2011. "A comprehensive techno-economical review of indirect solar desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4187-4199.
    25. Ali, Aamer & Tufa, Ramato Ashu & Macedonio, Francesca & Curcio, Efrem & Drioli, Enrico, 2018. "Membrane technology in renewable-energy-driven desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1-21.
    26. Eltawil, Mohamed A. & Zhengming, Zhao & Yuan, Liqiang, 2009. "A review of renewable energy technologies integrated with desalination systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2245-2262, December.
    27. Lamei, A. & van der Zaag, P. & von Münch, E., 2008. "Impact of solar energy cost on water production cost of seawater desalination plants in Egypt," Energy Policy, Elsevier, vol. 36(5), pages 1748-1756, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Aijun & Zhou, Dinglin & Chen, Guoshi & Liu, Yuhao & Long, Yan, 2020. "Multi-region comparisons of energy-related CO2 emissions and production water use during energy development in northwestern China," Renewable Energy, Elsevier, vol. 153(C), pages 940-961.
    2. Dsilva Winfred Rufuss, D. & Arulvel, S. & Anil Kumar, V. & Davies, P.A. & Arunkumar, T. & Sathyamurthy, Ravishankar & Kabeel, A.E. & Anand Vishwanath, M. & Sai Charan Reddy, D. & Dutta, Amandeep & Agr, 2022. "Combined effects of composite thermal energy storage and magnetic field to enhance productivity in solar desalination," Renewable Energy, Elsevier, vol. 181(C), pages 219-234.
    3. Corsini, Alessandro & Delibra, Giovanni & Pizzuti, Isabella & Tajalli-Ardekani, Erfan, 2023. "Challenges of renewable energy communities on small Mediterranean islands: A case study on Ponza island," Renewable Energy, Elsevier, vol. 215(C).
    4. Guo, Chenglong & Zhao, Jiaxu & Zhang, Wenting & Miao, Endong & Xie, Yuhang, 2020. "Constructing 3D optical absorption holes by stacking macroporous membrane for highly efficient solar steam generation," Renewable Energy, Elsevier, vol. 159(C), pages 944-953.
    5. Roumpedakis, Tryfon C. & Loumpardis, George & Monokrousou, Evropi & Braimakis, Konstantinos & Charalampidis, Antonios & Karellas, Sotirios, 2020. "Exergetic and economic analysis of a solar driven small scale ORC," Renewable Energy, Elsevier, vol. 157(C), pages 1008-1024.
    6. Chen, W.L. & Xie, G., 2022. "Performance of multi-stage tubular solar still operating under vacuum," Renewable Energy, Elsevier, vol. 201(P2), pages 34-46.
    7. Okampo, Ewaoche John & Nwulu, Nnamdi, 2021. "Optimisation of renewable energy powered reverse osmosis desalination systems: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    8. Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Mousavi, Soroush & Rajaee, Fatemeh & Kouravand, Amir, 2021. "Empirical investigation of a photovoltaic-thermal system with phase change materials and aluminum shavings porous media," Renewable Energy, Elsevier, vol. 167(C), pages 662-675.
    9. Uche, J. & Muzás, A. & Acevedo, L.E. & Usón, S. & Martínez, A. & Bayod, A.A., 2020. "Experimental tests to validate the simulation model of a Domestic Trigeneration Scheme with hybrid RESs and Desalting Techniques," Renewable Energy, Elsevier, vol. 155(C), pages 407-419.
    10. Liu, Chao & Hashemian, Mehran & Shawabkeh, Ali & Dizaji, Hamed Sadighi & Saleem, S. & Mohideen Batcha, Mohd Faizal & Wae-hayee, Makatar, 2021. "CFD-based irreversibility analysis of avant-garde semi-O/O-shape grooving fashions of solar pond heat trade-off unit," Renewable Energy, Elsevier, vol. 171(C), pages 328-343.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Meer A.M. & Rehman, S. & Al-Sulaiman, Fahad A., 2018. "A hybrid renewable energy system as a potential energy source for water desalination using reverse osmosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 456-477.
    2. Omar, Amr & Nashed, Amir & Li, Qiyuan & Leslie, Greg & Taylor, Robert A., 2020. "Pathways for integrated concentrated solar power - Desalination: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Ali, Aamer & Tufa, Ramato Ashu & Macedonio, Francesca & Curcio, Efrem & Drioli, Enrico, 2018. "Membrane technology in renewable-energy-driven desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1-21.
    4. Li, Sheying & Cai, Yang-Hui & Schäfer, Andrea I. & Richards, Bryce S., 2019. "Renewable energy powered membrane technology: A review of the reliability of photovoltaic-powered membrane system components for brackish water desalination," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Sharon, H. & Reddy, K.S., 2015. "A review of solar energy driven desalination technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1080-1118.
    6. Ihsan Ullah & Mohammad G. Rasul, 2018. "Recent Developments in Solar Thermal Desalination Technologies: A Review," Energies, MDPI, vol. 12(1), pages 1-31, December.
    7. Shalaby, S.M., 2017. "Reverse osmosis desalination powered by photovoltaic and solar Rankine cycle power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 789-797.
    8. Calise, Francesco & Cappiello, Francesco Liberato & Vanoli, Raffaele & Vicidomini, Maria, 2019. "Economic assessment of renewable energy systems integrating photovoltaic panels, seawater desalination and water storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    9. Li, Chennan & Goswami, Yogi & Stefanakos, Elias, 2013. "Solar assisted sea water desalination: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 136-163.
    10. Tashtoush, Bourhan & Alyahya, Wa'ed & Al Ghadi, Malak & Al-Omari, Jamal & Morosuk, Tatiana, 2023. "Renewable energy integration in water desalination: State-of-the-art review and comparative analysis," Applied Energy, Elsevier, vol. 352(C).
    11. Ahmadi, Esmaeil & McLellan, Benjamin & Tezuka, Tetsuo, 2020. "The economic synergies of modelling the renewable energy-water nexus towards sustainability," Renewable Energy, Elsevier, vol. 162(C), pages 1347-1366.
    12. Fine, J.P. & Friedman, J. & Dworkin, S.B., 2015. "Transient analysis of a photovoltaic thermal heat input process with thermal storage," Applied Energy, Elsevier, vol. 160(C), pages 308-320.
    13. Mito, Mohamed T. & Ma, Xianghong & Albuflasa, Hanan & Davies, Philip A., 2019. "Reverse osmosis (RO) membrane desalination driven by wind and solar photovoltaic (PV) energy: State of the art and challenges for large-scale implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 669-685.
    14. Esmaeil Ahmadi & Benjamin McLellan & Seiichi Ogata & Behnam Mohammadi-Ivatloo & Tetsuo Tezuka, 2020. "An Integrated Planning Framework for Sustainable Water and Energy Supply," Sustainability, MDPI, vol. 12(10), pages 1-37, May.
    15. Schallenberg-Rodríguez, Julieta & Del Rio-Gamero, Beatriz & Melian-Martel, Noemi & Lis Alecio, Tyrone & González Herrera, Javier, 2020. "Energy supply of a large size desalination plant using wave energy. Practical case: North of Gran Canaria," Applied Energy, Elsevier, vol. 278(C).
    16. Okampo, Ewaoche John & Nwulu, Nnamdi, 2021. "Optimisation of renewable energy powered reverse osmosis desalination systems: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    17. Li, Chennan & Besarati, Saeb & Goswami, Yogi & Stefanakos, Elias & Chen, Huijuan, 2013. "Reverse osmosis desalination driven by low temperature supercritical organic rankine cycle," Applied Energy, Elsevier, vol. 102(C), pages 1071-1080.
    18. Vakilifard, Negar & A. Bahri, Parisa & Anda, Martin & Ho, Goen, 2018. "A two-level decision making approach for optimal integrated urban water and energy management," Energy, Elsevier, vol. 155(C), pages 408-425.
    19. Gude, Veera Gnaneswar, 2015. "Energy storage for desalination processes powered by renewable energy and waste heat sources," Applied Energy, Elsevier, vol. 137(C), pages 877-898.
    20. Lee, Sangkeum & Cho, Hong-Yeon & Har, Dongsoo, 2018. "Operation optimization with jointly controlled modules powered by hybrid energy source: A case study of desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3070-3080.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:134:y:2019:i:c:p:1473-1490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.