IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i10p4295-d362408.html
   My bibliography  Save this article

An Integrated Planning Framework for Sustainable Water and Energy Supply

Author

Listed:
  • Esmaeil Ahmadi

    (Graduate School of Energy Science, Kyoto University, Kyoto 606-8501, Japan)

  • Benjamin McLellan

    (Graduate School of Energy Science, Kyoto University, Kyoto 606-8501, Japan)

  • Seiichi Ogata

    (Graduate School of Energy Science, Kyoto University, Kyoto 606-8501, Japan)

  • Behnam Mohammadi-Ivatloo

    (Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz 5157944533, Iran
    Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam)

  • Tetsuo Tezuka

    (Graduate School of Energy Science, Kyoto University, Kyoto 606-8501, Japan)

Abstract

This study aims to reveal the economic, technical, and environmental impacts of different system configurations (centralized or decentralized, components, and technologies) on transition plans to achieve a higher share of renewable energy and desalination supplies for regions facing water scarcity. The main contribution of this research is the comparative evaluation of on-grid decentralized or distributed renewable-powered desalination systems for sustainable water and energy supply planning. Applying a novel nexus approach, an interactive multi-period planning model is developed to highlight synergies and to identify conflicts of planning both energy and water sectors at the same time as endogenous subsystems of one overall system. For studying these synergies in this study, the pace of technology deployment and the path of decline in overall costs are assumed to be a function of experience and knowledge as two-factor learning curves. Using data from 81 projects, the levelized cost and capacity factor of utility-scale photovoltaic and wind supplies in the Middle East were calculated. The results indicate that a scenario with a decentralized water sector and renewable-powered multiple-effect distillation technology has the best overall performance among the proposed scenarios.

Suggested Citation

  • Esmaeil Ahmadi & Benjamin McLellan & Seiichi Ogata & Behnam Mohammadi-Ivatloo & Tetsuo Tezuka, 2020. "An Integrated Planning Framework for Sustainable Water and Energy Supply," Sustainability, MDPI, vol. 12(10), pages 1-37, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:4295-:d:362408
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/10/4295/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/10/4295/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roberto Gomes Cavalcante Júnior & Marcos Aurélio Vasconcelos Freitas & Neilton Fidelis da Silva & Franklin Rocha de Azevedo Filho, 2019. "Sustainable Groundwater Exploitation Aiming at the Reduction of Water Vulnerability in the Brazilian Semi-Arid Region," Energies, MDPI, vol. 12(5), pages 1-20, March.
    2. Miketa, Asami & Schrattenholzer, Leo, 2004. "Experiments with a methodology to model the role of R&D expenditures in energy technology learning processes; first results," Energy Policy, Elsevier, vol. 32(15), pages 1679-1692, October.
    3. David Katz & Arkadiy Shafran, 2019. "Transboundary Exchanges of Renewable Energy and Desalinated Water in the Middle East," Energies, MDPI, vol. 12(8), pages 1-21, April.
    4. Miklós Gyalai-Korpos & László Zentkó & Csaba Hegyfalvi & Gergely Detzky & Péter Tildy & Nóra Hegedűsné Baranyai & Gábor Pintér & Henrik Zsiborács, 2020. "The Role of Electricity Balancing and Storage: Developing Input Parameters for the European Calculator for Concept Modeling," Sustainability, MDPI, vol. 12(3), pages 1-26, January.
    5. Köberle, Alexandre C. & Gernaat, David E.H.J. & van Vuuren, Detlef P., 2015. "Assessing current and future techno-economic potential of concentrated solar power and photovoltaic electricity generation," Energy, Elsevier, vol. 89(C), pages 739-756.
    6. Kobos, Peter H. & Erickson, Jon D. & Drennen, Thomas E., 2006. "Technological learning and renewable energy costs: implications for US renewable energy policy," Energy Policy, Elsevier, vol. 34(13), pages 1645-1658, September.
    7. Li, Qian & Loy-Benitez, Jorge & Nam, KiJeon & Hwangbo, Soonho & Rashidi, Jouan & Yoo, ChangKyoo, 2019. "Sustainable and reliable design of reverse osmosis desalination with hybrid renewable energy systems through supply chain forecasting using recurrent neural networks," Energy, Elsevier, vol. 178(C), pages 277-292.
    8. Shahabi, Maedeh P. & McHugh, Adam & Anda, Martin & Ho, Goen, 2014. "Environmental life cycle assessment of seawater reverse osmosis desalination plant powered by renewable energy," Renewable Energy, Elsevier, vol. 67(C), pages 53-58.
    9. Mata-Torres, Carlos & Escobar, Rodrigo A. & Cardemil, José M. & Simsek, Yeliz & Matute, José A., 2017. "Solar polygeneration for electricity production and desalination: Case studies in Venezuela and northern Chile," Renewable Energy, Elsevier, vol. 101(C), pages 387-398.
    10. Manju, S. & Sagar, Netramani, 2017. "Renewable energy integrated desalination: A sustainable solution to overcome future fresh-water scarcity in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 594-609.
    11. Li, Zhenyu & Siddiqi, Afreen & Anadon, Laura Diaz & Narayanamurti, Venkatesh, 2018. "Towards sustainability in water-energy nexus: Ocean energy for seawater desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3833-3847.
    12. Yi Zhou & Alun Gu, 2019. "Learning Curve Analysis of Wind Power and Photovoltaics Technology in US: Cost Reduction and the Importance of Research, Development and Demonstration," Sustainability, MDPI, vol. 11(8), pages 1-16, April.
    13. Tony Allan & Martin Keulertz & Eckart Woertz, 2015. "The water-food-energy nexus: an introduction to nexus concepts and some conceptual and operational problems," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 31(3), pages 301-311, September.
    14. Sadiqa, Ayesha & Gulagi, Ashish & Breyer, Christian, 2018. "Energy transition roadmap towards 100% renewable energy and role of storage technologies for Pakistan by 2050," Energy, Elsevier, vol. 147(C), pages 518-533.
    15. Gude, Veera Gnaneswar, 2016. "Geothermal source potential for water desalination – Current status and future perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1038-1065.
    16. Hamilton, James & Negnevitsky, Michael & Wang, Xiaolin & Lyden, Sarah, 2019. "High penetration renewable generation within Australian isolated and remote power systems," Energy, Elsevier, vol. 168(C), pages 684-692.
    17. Aghahosseini, Arman & Bogdanov, Dmitrii & Barbosa, Larissa S.N.S. & Breyer, Christian, 2019. "Analysing the feasibility of powering the Americas with renewable energy and inter-regional grid interconnections by 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 187-205.
    18. Ylänen, Markus M.M. & Lampinen, Markku J., 2014. "Determining optimal operating pressure for AaltoRO – A novel wave powered desalination system," Renewable Energy, Elsevier, vol. 69(C), pages 386-392.
    19. Gude, Veera Gnaneswar, 2015. "Energy storage for desalination processes powered by renewable energy and waste heat sources," Applied Energy, Elsevier, vol. 137(C), pages 877-898.
    20. Giwa, Adewale & Akther, Nawshad & Housani, Amna Al & Haris, Sabeera & Hasan, Shadi Wajih, 2016. "Recent advances in humidification dehumidification (HDH) desalination processes: Improved designs and productivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 929-944.
    21. Alghoul, M.A. & Poovanaesvaran, P. & Mohammed, M.H. & Fadhil, A.M. & Muftah, A.F. & Alkilani, M.M. & Sopian, K., 2016. "Design and experimental performance of brackish water reverse osmosis desalination unit powered by 2 kW photovoltaic system," Renewable Energy, Elsevier, vol. 93(C), pages 101-114.
    22. Khan, Meer A.M. & Rehman, S. & Al-Sulaiman, Fahad A., 2018. "A hybrid renewable energy system as a potential energy source for water desalination using reverse osmosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 456-477.
    23. Vakilifard, Negar & A. Bahri, Parisa & Anda, Martin & Ho, Goen, 2019. "An interactive planning model for sustainable urban water and energy supply," Applied Energy, Elsevier, vol. 235(C), pages 332-345.
    24. Ali, Muhammad Tauha & Fath, Hassan E.S. & Armstrong, Peter R., 2011. "A comprehensive techno-economical review of indirect solar desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4187-4199.
    25. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
    26. Ali, Aamer & Tufa, Ramato Ashu & Macedonio, Francesca & Curcio, Efrem & Drioli, Enrico, 2018. "Membrane technology in renewable-energy-driven desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1-21.
    27. Fernandez-Gonzalez, C. & Dominguez-Ramos, A. & Ibañez, R. & Irabien, A., 2015. "Sustainability assessment of electrodialysis powered by photovoltaic solar energy for freshwater production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 604-615.
    28. Mentis, Dimitrios & Karalis, George & Zervos, Arthouros & Howells, Mark & Taliotis, Constantinos & Bazilian, Morgan & Rogner, Holger, 2016. "Desalination using renewable energy sources on the arid islands of South Aegean Sea," Energy, Elsevier, vol. 94(C), pages 262-272.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sagar Shelare & Ravinder Kumar & Trupti Gajbhiye & Sumit Kanchan, 2023. "Role of Geothermal Energy in Sustainable Water Desalination—A Review on Current Status, Parameters, and Challenges," Energies, MDPI, vol. 16(6), pages 1-22, March.
    2. Esmaeil Ahmadi & Younes Noorollahi & Behnam Mohammadi-Ivatloo & Amjad Anvari-Moghaddam, 2020. "Stochastic Operation of a Solar-Powered Smart Home: Capturing Thermal Load Uncertainties," Sustainability, MDPI, vol. 12(12), pages 1-18, June.
    3. Muna Hindiyeh & Aiman Albatayneh & Rashed Altarawneh & Mustafa Jaradat & Murad Al-Omary & Qasem Abdelal & Tarek Tayara & Osama Khalil & Adel Juaidi & Ramez Abdallah & Partick Dutournié & Mejdi Jeguiri, 2021. "Sea Level Rise Mitigation by Global Sea Water Desalination Using Renewable-Energy-Powered Plants," Sustainability, MDPI, vol. 13(17), pages 1-21, August.
    4. Hongbo Li & Rui Chen & Xianchao Zhang, 2022. "Uncertain Public R&D Project Portfolio Selection Considering Sectoral Balancing and Project Failure," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
    5. Xiaoqing Huang & Xiaoyong Lu & Yuqi Sun & Jingui Yao & Wenxing Zhu, 2022. "A Comprehensive Performance Evaluation of Chinese Energy Supply Chain under “Double-Carbon” Goals Based on AHP and Three-Stage DEA," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    6. Esmaeil Ahmadi & Benjamin McLellan & Behnam Mohammadi-Ivatloo & Tetsuo Tezuka, 2020. "The Role of Renewable Energy Resources in Sustainability of Water Desalination as a Potential Fresh-Water Source: An Updated Review," Sustainability, MDPI, vol. 12(13), pages 1-31, June.
    7. Elena Helerea & Marius D. Calin & Cristian Musuroi, 2023. "Water Energy Nexus and Energy Transition—A Review," Energies, MDPI, vol. 16(4), pages 1-31, February.
    8. Maurizio Filippo Acciarri & Silvia Checola & Paolo Galli & Giacomo Magatti & Silvana Stefani, 2021. "Water Resource Management and Sustainability: A Case Study in Faafu Atoll in the Republic of Maldives," Sustainability, MDPI, vol. 13(6), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Esmaeil Ahmadi & Benjamin McLellan & Behnam Mohammadi-Ivatloo & Tetsuo Tezuka, 2020. "The Role of Renewable Energy Resources in Sustainability of Water Desalination as a Potential Fresh-Water Source: An Updated Review," Sustainability, MDPI, vol. 12(13), pages 1-31, June.
    2. Ahmadi, Esmaeil & McLellan, Benjamin & Tezuka, Tetsuo, 2020. "The economic synergies of modelling the renewable energy-water nexus towards sustainability," Renewable Energy, Elsevier, vol. 162(C), pages 1347-1366.
    3. Rosales-Asensio, Enrique & Borge-Diez, David & Pérez-Hoyos, Ana & Colmenar-Santos, Antonio, 2019. "Reduction of water cost for an existing wind-energy-based desalination scheme: A preliminary configuration," Energy, Elsevier, vol. 167(C), pages 548-560.
    4. Mito, Mohamed T. & Ma, Xianghong & Albuflasa, Hanan & Davies, Philip A., 2019. "Reverse osmosis (RO) membrane desalination driven by wind and solar photovoltaic (PV) energy: State of the art and challenges for large-scale implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 669-685.
    5. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
    6. Kasaeian, Alibakhsh & Rajaee, Fatemeh & Yan, Wei-Mon, 2019. "Osmotic desalination by solar energy: A critical review," Renewable Energy, Elsevier, vol. 134(C), pages 1473-1490.
    7. Elia, A. & Kamidelivand, M. & Rogan, F. & Ó Gallachóir, B., 2021. "Impacts of innovation on renewable energy technology cost reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    8. Mahmoudi, Ali & Bostani, Mohammad & Rashidi, Saman & Valipour, Mohammad Sadegh, 2023. "Challenges and opportunities of desalination with renewable energy resources in Middle East countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    9. Castrejon-Campos, Omar & Aye, Lu & Hui, Felix Kin Peng, 2022. "Effects of learning curve models on onshore wind and solar PV cost developments in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    10. Uche, J. & Muzás, A. & Acevedo, L.E. & Usón, S. & Martínez, A. & Bayod, A.A., 2020. "Experimental tests to validate the simulation model of a Domestic Trigeneration Scheme with hybrid RESs and Desalting Techniques," Renewable Energy, Elsevier, vol. 155(C), pages 407-419.
    11. Ihsan Ullah & Mohammad G. Rasul, 2018. "Recent Developments in Solar Thermal Desalination Technologies: A Review," Energies, MDPI, vol. 12(1), pages 1-31, December.
    12. Schauf, Magnus & Schwenen, Sebastian, 2021. "Mills of progress grind slowly? Estimating learning rates for onshore wind energy," Energy Economics, Elsevier, vol. 104(C).
    13. Omar, Amr & Nashed, Amir & Li, Qiyuan & Leslie, Greg & Taylor, Robert A., 2020. "Pathways for integrated concentrated solar power - Desalination: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    14. Schallenberg-Rodríguez, Julieta & Del Rio-Gamero, Beatriz & Melian-Martel, Noemi & Lis Alecio, Tyrone & González Herrera, Javier, 2020. "Energy supply of a large size desalination plant using wave energy. Practical case: North of Gran Canaria," Applied Energy, Elsevier, vol. 278(C).
    15. Hernandez-Negron, Christian G. & Baker, Erin & Goldstein, Anna P., 2023. "A hypothesis for experience curves of related technologies with an application to wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    16. Baghbanzadeh, Mohammadali & Rana, Dipak & Lan, Christopher Q. & Matsuura, Takeshi, 2017. "Zero thermal input membrane distillation, a zero-waste and sustainable solution for freshwater shortage," Applied Energy, Elsevier, vol. 187(C), pages 910-928.
    17. Ali, Aamer & Tufa, Ramato Ashu & Macedonio, Francesca & Curcio, Efrem & Drioli, Enrico, 2018. "Membrane technology in renewable-energy-driven desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1-21.
    18. Reinhard Haas & Marlene Sayer & Amela Ajanovic & Hans Auer, 2023. "Technological learning: Lessons learned on energy technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
    19. Okampo, Ewaoche John & Nwulu, Nnamdi, 2021. "Optimisation of renewable energy powered reverse osmosis desalination systems: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    20. Calise, Francesco & Cappiello, Francesco Liberato & Vanoli, Raffaele & Vicidomini, Maria, 2019. "Economic assessment of renewable energy systems integrating photovoltaic panels, seawater desalination and water storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:4295-:d:362408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.