IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i11d10.1007_s10668-023-03848-z.html
   My bibliography  Save this article

A comprehensive review of the effective environmental parameters on the efficiency and suitable site selection for installing solar based water desalination systems in Iran

Author

Listed:
  • Mohammad Hemmat Esfe

    (Imam Hossein University)

  • Vahid Vaisi

    (Imam Hossein University)

  • Seyed Hosseini Tamrabad

    (Nanofluid Advanced Research Team)

  • Hossein Hatami

    (Lorestan University)

  • Davood Toghraie

    (Islamic Azad University)

  • Roozbeh Moshfeghi

    (Department of Chemical Engineering, Imam Hossein University)

  • Saeed Esfandeh

    (Jundi-Shapur University of Technology)

Abstract

The increase in demand for water has caused attention to non-traditional methods for water supply in many places. Solar still is a simple, economical and suitable technology for providing drinking water from salt water that can be used even in remote areas. The challenge facing these technologies is to increase their performance, which is possible through three ways: environmental, design and operational parameters. This research has investigated the potential and location of Iran for the installation of solar still using environmental parameters. The three parameters of ambient temperature, solar radiation intensity and wind velocity are the most important environmental parameters affecting the performance of solar still; hence, they were used to investigate the potential of Iran to install solar still. The long-term information of the desired environmental parameters was prepared using field and telemetry methods; then, by averaging each parameter in ArcGIS software, a map was prepared for the ease of analysis and review. The results show that Iran has a high potential for using solar still in terms of environmental conditions affecting the performance of solar still and having brackish water resources and the provinces of Sistan and Baluchistan, Hormozgan, Fars, Kerman and Bushehr are the most favorable places in the country. Iran has been investigated for the installation of solar still based on three parameters. Also, the results show that the provinces of Sistan and Baluchistan (2196 kWh/m2), Fars (2148 kWh/m2), Hormozgan (2136 kWh/m2), Kerman (2116 kWh/m2), and Kohkiloyeh and Boyer-Ahmad (2098 kWh/m2), are the regions with highest potentials for installation of solar based water desalination systems in Iran.

Suggested Citation

  • Mohammad Hemmat Esfe & Vahid Vaisi & Seyed Hosseini Tamrabad & Hossein Hatami & Davood Toghraie & Roozbeh Moshfeghi & Saeed Esfandeh, 2024. "A comprehensive review of the effective environmental parameters on the efficiency and suitable site selection for installing solar based water desalination systems in Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 28893-28921, November.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:11:d:10.1007_s10668-023-03848-z
    DOI: 10.1007/s10668-023-03848-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03848-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03848-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muthusamy, C. & Srithar, K., 2017. "Energy saving potential in humidification-dehumidification desalination system," Energy, Elsevier, vol. 118(C), pages 729-741.
    2. Pugsley, Adrian & Zacharopoulos, Aggelos & Mondol, Jayanta Deb & Smyth, Mervyn, 2016. "Global applicability of solar desalination," Renewable Energy, Elsevier, vol. 88(C), pages 200-219.
    3. El-Sebaii, A.A., 2011. "On effect of wind speed on passive solar still performance based on inner/outer surface temperatures of the glass cover," Energy, Elsevier, vol. 36(8), pages 4943-4949.
    4. Colmenar-Santos, Antonio & Palomo-Torrejón, Elisabet & Mur-Pérez, Francisco & Rosales-Asensio, Enrique, 2020. "Thermal desalination potential with parabolic trough collectors and geothermal energy in the Spanish southeast," Applied Energy, Elsevier, vol. 262(C).
    5. Kucuksari, Sadik & Khaleghi, Amirreza M. & Hamidi, Maryam & Zhang, Ye & Szidarovszky, Ferenc & Bayraksan, Guzin & Son, Young-Jun, 2014. "An Integrated GIS, optimization and simulation framework for optimal PV size and location in campus area environments," Applied Energy, Elsevier, vol. 113(C), pages 1601-1613.
    6. Cao, Fei & Yang, Tian & Liu, Qingjun & Zhu, Tianyu & Li, Huashan & Zhao, Liang, 2017. "Design and simulation of a solar double-chimney power plant," Renewable Energy, Elsevier, vol. 113(C), pages 764-773.
    7. Kalogirou, Soteris, 1997. "Survey of solar desalination systems and system selection," Energy, Elsevier, vol. 22(1), pages 69-81.
    8. Huang, Nantian & Zhao, Xuanyuan & Guo, Yu & Cai, Guowei & Wang, Rijun, 2023. "Distribution network expansion planning considering a distributed hydrogen-thermal storage system based on photovoltaic development of the Whole County of China," Energy, Elsevier, vol. 278(C).
    9. Lv, Song & Zhang, Bolong & Ji, Yishuang & Ren, Juwen & Yang, Jiahao & Lai, Yin & Chang, Zhihao, 2023. "Comprehensive research on a high performance solar and radiative cooling driving thermoelectric generator system with concentration for passive power generation," Energy, Elsevier, vol. 275(C).
    10. Ming, Tingzhen & Gong, Tingrui & de Richter, Renaud K. & Cai, Cunjin & Sherif, S.A., 2017. "Numerical analysis of seawater desalination based on a solar chimney power plant," Applied Energy, Elsevier, vol. 208(C), pages 1258-1273.
    11. Ahsan, A. & Imteaz, M. & Thomas, U.A. & Azmi, M. & Rahman, A. & Nik Daud, N.N., 2014. "Parameters affecting the performance of a low cost solar still," Applied Energy, Elsevier, vol. 114(C), pages 924-930.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ibrahim, Ayman G.M. & Allam, Elsayed E. & Elshamarka, Salman E., 2015. "A modified basin type solar still: Experimental performance and economic study," Energy, Elsevier, vol. 93(P1), pages 335-342.
    2. M, Chandrashekara & Yadav, Avadhesh, 2017. "Water desalination system using solar heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1308-1330.
    3. Nickyar Ghadirinejad & Fredric Ottermo & Raheleh Nowzari & Naif Alsaadi & Mazyar Ghadiri Nejad, 2023. "Optimizing a Green and Sustainable Off-Grid Energy-System Design: A Real Case," Sustainability, MDPI, vol. 15(17), pages 1-16, August.
    4. Prado de Nicolás, Amanda & Molina-García, Ángel & García-Bermejo, Juan Tomás & Vera-García, Francisco, 2023. "Desalination, minimal and zero liquid discharge powered by renewable energy sources: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    5. Sebastian, Geo & Thomas, Shijo, 2021. "Influence of providing a three-layer spectrally selective floating absorber on passive single slope solar still productivity under tropical conditions," Energy, Elsevier, vol. 214(C).
    6. Shoeibi, Shahin & Rahbar, Nader & Abedini Esfahlani, Ahad & Kargarsharifabad, Hadi, 2020. "Application of simultaneous thermoelectric cooling and heating to improve the performance of a solar still: An experimental study and exergy analysis," Applied Energy, Elsevier, vol. 263(C).
    7. Cai, Benan & Long, Chengjun & Du, Qiaochen & Zhang, Wenchao & Hou, Yandong & Wang, Haijun & Cai, Weihua, 2023. "Analysis of a spray flash desalination system driven by low-grade waste heat with different intermittencies," Energy, Elsevier, vol. 277(C).
    8. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2014. "An optimal investment planning framework for multiple distributed generation units in industrial distribution systems," Applied Energy, Elsevier, vol. 124(C), pages 62-72.
    9. Zhong, Qing & Tong, Daoqin, 2020. "Spatial layout optimization for solar photovoltaic (PV) panel installation," Renewable Energy, Elsevier, vol. 150(C), pages 1-11.
    10. Wang, Qiushi & Liang, Shen & Zhu, Ziye & Wu, Gang & Su, Yuehong & Zheng, Hongfei, 2019. "Performance of seawater-filling type planting system based on solar distillation process: Numerical and experimental investigation," Applied Energy, Elsevier, vol. 250(C), pages 1225-1234.
    11. Fadl A. Essa & AbdelKader Abdullah & Hasan Sh. Majdi & Ali Basem & Hayder A. Dhahad & Zakaria M. Omara & Suha A. Mohammed & Wissam H. Alawee & Amged Al Ezzi & Talal Yusaf, 2022. "Parameters Affecting the Efficiency of Solar Stills—Recent Review," Sustainability, MDPI, vol. 14(17), pages 1-58, August.
    12. Chen, Q. & Kum Ja, M. & Li, Y. & Chua, K.J., 2018. "Evaluation of a solar-powered spray-assisted low-temperature desalination technology," Applied Energy, Elsevier, vol. 211(C), pages 997-1008.
    13. Hoffmann, J.E. & Dall, E.P., 2018. "Integrating desalination with concentrating solar thermal power: A Namibian case study," Renewable Energy, Elsevier, vol. 115(C), pages 423-432.
    14. Rabehi, Rayan & Chaker, Abla & Ming, Tingzhen & Gong, Tingrui, 2018. "Numerical simulation of solar chimney power plant adopting the fan model," Renewable Energy, Elsevier, vol. 126(C), pages 1093-1101.
    15. Amro M Elshurafa & Abdel Rahman Muhsen, 2019. "The Upper Limit of Distributed Solar PV Capacity in Riyadh: A GIS-Assisted Study," Sustainability, MDPI, vol. 11(16), pages 1-20, August.
    16. Shahbaz Nasir Khan & Rana Noman Saleem & Hafiz Muhammad Safdar Khan & Abdul Nasir, 2021. "Productivity Comparison Of Conventional And Single Slope Solar Still With Internal Reflectors: An Overview," Earth Sciences Pakistan (ESP), Zibeline International Publishing, vol. 5(1), pages 16-19, April.
    17. Liu, Zhan & Liu, Zihui & Guo, Junfei & Wang, Fan & Yang, Xiaohu & Yan, Jinyue, 2022. "Innovative ladder-shaped fin design on a latent heat storage device for waste heat recovery," Applied Energy, Elsevier, vol. 321(C).
    18. Muftah, Ali. F. & Alghoul, M.A. & Fudholi, Ahmad & Abdul-Majeed, M.M. & Sopian, K., 2014. "Factors affecting basin type solar still productivity: A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 430-447.
    19. Ihsan Ullah & Mohammad G. Rasul, 2018. "Recent Developments in Solar Thermal Desalination Technologies: A Review," Energies, MDPI, vol. 12(1), pages 1-31, December.
    20. Costa, Fabrício Rodrigues & Ribeiro, Carlos Antonio Alvares Soares & Marcatti, Gustavo Eduardo & Lorenzon, Alexandre Simões & Teixeira, Thaisa Ribeiro & Domingues, Getulio Fonseca & Castro, Nero Lemos, 2020. "GIS applied to location of bioenergy plants in tropical agricultural areas," Renewable Energy, Elsevier, vol. 153(C), pages 911-918.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:11:d:10.1007_s10668-023-03848-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.