IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v32y2007i11p1873-1881.html
   My bibliography  Save this article

An economic analysis and energy use in stake-tomato production in Tokat province of Turkey

Author

Listed:
  • Esengun, Kemal
  • Erdal, Gülistan
  • Gündüz, Orhan
  • Erdal, Hilmi

Abstract

The aim of this study is to determine the input–output energy consumption and to make a cost analysis of intermediate type stake-tomato grown in open field in Tokat province of Turkey. The data used in the study were obtained from 98 local tomato growers using a questionnaire. The farms were chosen by random sampling method. The results showed that the amount of energy consumed in stake-tomato production was 96957.36MJha−1. About 42% of this was generated by diesel oil and 38% from fertilizers and machinery. The input–output ratio was 0.80 and energy productivity was found to be 1.00kgMJha−1. About 76% of the total energy inputs used in stake-tomato production was non-renewable while only about 22% was renewable. These findings reveal that intensive input use in stake-tomato production, especially chemical fertilizers, gives a high tomato yield but also raises some problems like environmental pollution and global warming. Thus, new policies, emphasizing energy consumption without degradation of national resources, should be designed for such farms.

Suggested Citation

  • Esengun, Kemal & Erdal, Gülistan & Gündüz, Orhan & Erdal, Hilmi, 2007. "An economic analysis and energy use in stake-tomato production in Tokat province of Turkey," Renewable Energy, Elsevier, vol. 32(11), pages 1873-1881.
  • Handle: RePEc:eee:renene:v:32:y:2007:i:11:p:1873-1881
    DOI: 10.1016/j.renene.2006.07.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148106002242
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2006.07.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Uhlin, Hans-Erik, 1998. "Why energy productivity is increasing: An I-O analysis of Swedish agriculture," Agricultural Systems, Elsevier, vol. 56(4), pages 443-465, April.
    2. Hatirli, Selim Adem & Ozkan, Burhan & Fert, Cemal, 2006. "Energy inputs and crop yield relationship in greenhouse tomato production," Renewable Energy, Elsevier, vol. 31(4), pages 427-438.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pahlavan, Reza & Omid, Mahmoud & Akram, Asadollah, 2011. "Energy use efficiency in greenhouse tomato production in Iran," Energy, Elsevier, vol. 36(12), pages 6714-6719.
    2. Karakaya, Ahmet & Özilgen, Mustafa, 2011. "Energy utilization and carbon dioxide emission in the fresh, paste, whole-peeled, diced, and juiced tomato production processes," Energy, Elsevier, vol. 36(8), pages 5101-5110.
    3. Pishgar-Komleh, Seyyed Hassan & Keyhani, Alireza & Mostofi-Sarkari, Mohammad Reza & Jafari, Ali, 2012. "Energy and economic analysis of different seed corn harvesting systems in Iran," Energy, Elsevier, vol. 43(1), pages 469-476.
    4. Burak Saltuk & Barbara Jagosz & Osman Gökdoğan & Roman Rolbiecki & Atılgan Atilgan & Stanisław Rolbiecki, 2022. "An Investigation on the Energy Balance and Greenhouse Gas Emissions of Orange Production in Turkey," Energies, MDPI, vol. 15(22), pages 1-14, November.
    5. Tabatabaie, Seyed Mohammad Hossein & Rafiee, Shahin & Keyhani, Alireza, 2012. "Energy consumption flow and econometric models of two plum cultivars productions in Tehran province of Iran," Energy, Elsevier, vol. 44(1), pages 211-216.
    6. Behroozeh, Samira & Hayati, Dariush & Karami, Ezatollah, 2022. "Determining and validating criteria to measure energy consumption sustainability in agricultural greenhouses," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    7. Jackson, T.M. & Hanjra, Munir A. & Khan, S. & Hafeez, M.M., 2011. "Building a climate resilient farm: A risk based approach for understanding water, energy and emissions in irrigated agriculture," Agricultural Systems, Elsevier, vol. 104(9), pages 729-745.
    8. van der Werf, Hayo M. G. & Petit, Jean & Sanders, Joost, 2005. "The environmental impacts of the production of concentrated feed: the case of pig feed in Bretagne," Agricultural Systems, Elsevier, vol. 83(2), pages 153-177, February.
    9. Ghatrehsamani, Shirin & Ebrahimi, Rahim & Kazi, Salim Newaz & Badarudin Badry, Ahmad & Sadeghinezhad, Emad, 2016. "Optimization model of peach production relevant to input energies – Yield function in Chaharmahal va Bakhtiari province, Iran," Energy, Elsevier, vol. 99(C), pages 315-321.
    10. Castoldi, Nicola & Bechini, Luca & Ferrante, Antonio, 2011. "Fossil energy usage for the production of baby leaves," Energy, Elsevier, vol. 36(1), pages 86-93.
    11. Barut, Zeliha Bereket & Ertekin, Can & Karaagac, Hasan Ali, 2011. "Tillage effects on energy use for corn silage in Mediterranean Coastal of Turkey," Energy, Elsevier, vol. 36(9), pages 5466-5475.
    12. Unakıtan, Gökhan & Aydın, Başak, 2018. "A comparison of energy use efficiency and economic analysis of wheat and sunflower production in Turkey: A case study in Thrace Region," Energy, Elsevier, vol. 149(C), pages 279-285.
    13. Jackson, Tamara M. & Khan, Shahbaz & Hafeez, Mohsin, 2010. "A comparative analysis of water application and energy consumption at the irrigated field level," Agricultural Water Management, Elsevier, vol. 97(10), pages 1477-1485, October.
    14. Ozkan, Burhan & Ceylan, R. Figen & Kizilay, Hatice, 2011. "Comparison of energy inputs in glasshouse double crop (fall and summer crops) tomato production," Renewable Energy, Elsevier, vol. 36(5), pages 1639-1644.
    15. Houshyar, Ehsan & Azadi, Hossein & Almassi, Morteza & Sheikh Davoodi, Mohammad Javad & Witlox, Frank, 2012. "Sustainable and efficient energy consumption of corn production in Southwest Iran: Combination of multi-fuzzy and DEA modeling," Energy, Elsevier, vol. 44(1), pages 672-681.
    16. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Yousefi, Marziye & Movahedi, Mehran, 2013. "Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks," Energy, Elsevier, vol. 52(C), pages 333-338.
    17. Bozoğlu, Mehmet & Ceyhan, Vedat, 2009. "Energy conversion efficiency of trout and sea bass production in the Black Sea, Turkey," Energy, Elsevier, vol. 34(2), pages 199-204.
    18. Dafni Despoina Avgoustaki & George Xydis, 2020. "Plant factories in the water-food-energy Nexus era: a systematic bibliographical review," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(2), pages 253-268, April.
    19. Hafeez, Mohsin & Bundschuh, Jochen & Mushtaq, Shahbaz, 2014. "Exploring synergies and tradeoffs: Energy, water, and economic implications of water reuse in rice-based irrigation systems," Applied Energy, Elsevier, vol. 114(C), pages 889-900.
    20. Pishgar-Komleh, Seyyed Hassan & Omid, Mahmoud & Heidari, Mohammad Davoud, 2013. "On the study of energy use and GHG (greenhouse gas) emissions in greenhouse cucumber production in Yazd province," Energy, Elsevier, vol. 59(C), pages 63-71.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:32:y:2007:i:11:p:1873-1881. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.