IDEAS home Printed from https://ideas.repec.org/a/aen/journl/ej39-3-blanfor.html
   My bibliography  Save this article

Simulating Annual Variation in Load, Wind, and Solar by Representative Hour Selection

Author

Listed:
  • Geoffrey J. Blanford, James H. Merrick, John E.T. Bistline, and David T. Young

Abstract

The spatial and temporal variability of renewable generation has important economic implications for electric sector investments and system operations. This study describes a method for selecting representative hours to preserve key distributional requirements for regional load, wind, and solar time series with a two-orders-of-magnitude reduction in dimensionality. We describe the implementation of this procedure in the US-REGEN model and compare impacts on energy system decisions with more common approaches. The results demonstrate how power sector modeling and capacity planning decisions are sensitive to the representation of intra-annual variation and how our proposed approach outperforms simple heuristic selection procedures with lower resolution. The representative hour approach preserves key properties of the joint underlying hourly distributions, whereas seasonal average approaches over-value wind and solar at higher penetration levels and under-value investment in dispatchable capacity by inaccurately capturing the corresponding residual load duration curves.

Suggested Citation

  • Geoffrey J. Blanford, James H. Merrick, John E.T. Bistline, and David T. Young, 2018. "Simulating Annual Variation in Load, Wind, and Solar by Representative Hour Selection," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
  • Handle: RePEc:aen:journl:ej39-3-blanfor
    as

    Download full text from publisher

    File URL: http://www.iaee.org/en/publications/ejarticle.aspx?id=3083
    Download Restriction: Access to full text is restricted to IAEE members and subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nelson, James & Johnston, Josiah & Mileva, Ana & Fripp, Matthias & Hoffman, Ian & Petros-Good, Autumn & Blanco, Christian & Kammen, Daniel M., 2012. "High-resolution modeling of the western North American power system demonstrates low-cost and low-carbon futures," Energy Policy, Elsevier, vol. 43(C), pages 436-447.
    2. van der Weijde, Adriaan Hendrik & Hobbs, Benjamin F., 2012. "The economics of planning electricity transmission to accommodate renewables: Using two-stage optimisation to evaluate flexibility and the cost of disregarding uncertainty," Energy Economics, Elsevier, vol. 34(6), pages 2089-2101.
    3. Ludig, Sylvie & Haller, Markus & Schmid, Eva & Bauer, Nico, 2011. "Fluctuating renewables in a long-term climate change mitigation strategy," Energy, Elsevier, vol. 36(11), pages 6674-6685.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Guibert, Paul & Shirizadeh, Behrang & Quirion, Philippe, 2020. "Variable time-step: A method for improving computational tractability for energy system models with long-term storage," Energy, Elsevier, vol. 213(C).
    2. Teichgraeber, Holger & Lindenmeyer, Constantin P. & Baumgärtner, Nils & Kotzur, Leander & Stolten, Detlef & Robinius, Martin & Bardow, André & Brandt, Adam R., 2020. "Extreme events in time series aggregation: A case study for optimal residential energy supply systems," Applied Energy, Elsevier, vol. 275(C).
    3. Ken Oshiro & Shinichiro Fujimori, 2024. "Limited impact of hydrogen co-firing on prolonging fossil-based power generation under low emissions scenarios," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Bistline, John E.T. & Merrick, James H., 2020. "Parameterizing open-source energy models: Statistical learning to estimate unknown power plant attributes," Applied Energy, Elsevier, vol. 269(C).
    5. ZareAfifi, Farzan & Mahmud, Zabir & Kurtz, Sarah, 2023. "Diurnal, physics-based strategy for computationally efficient capacity-expansion optimizations for solar-dominated grids," Energy, Elsevier, vol. 279(C).
    6. Merrick, James H. & Bistline, John E.T. & Blanford, Geoffrey J., 2024. "On representation of energy storage in electricity planning models," Energy Economics, Elsevier, vol. 136(C).
    7. Scott, Ian J. & Carvalho, Pedro M.S. & Botterud, Audun & Silva, Carlos A., 2019. "Clustering representative days for power systems generation expansion planning: Capturing the effects of variable renewables and energy storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    8. Marcy, Cara & Goforth, Teagan & Nock, Destenie & Brown, Maxwell, 2022. "Comparison of temporal resolution selection approaches in energy systems models," Energy, Elsevier, vol. 251(C).
    9. Bistline, John & Santen, Nidhi & Young, David, 2019. "The economic geography of variable renewable energy and impacts of trade formulations for renewable mandates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 79-96.
    10. Merrick, James H. & Weyant, John P., 2019. "On choosing the resolution of normative models," European Journal of Operational Research, Elsevier, vol. 279(2), pages 511-523.
    11. John E. T. Bistline & James Merrick & Victor Niemeyer, 2020. "Estimating Power Sector Leakage Risks and Provincial Impacts of Canadian Carbon Pricing," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(1), pages 91-118, May.
    12. Bistline, John E.T. & Brown, Maxwell & Siddiqui, Sauleh A. & Vaillancourt, Kathleen, 2020. "Electric sector impacts of renewable policy coordination: A multi-model study of the North American energy system," Energy Policy, Elsevier, vol. 145(C).
    13. Pavičević, Matija & Kavvadias, Konstantinos & Pukšec, Tomislav & Quoilin, Sylvain, 2019. "Comparison of different model formulations for modelling future power systems with high shares of renewables – The Dispa-SET Balkans model," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    14. John E. T. Bistline & David T. Young, 2022. "The role of natural gas in reaching net-zero emissions in the electric sector," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Bistline, John E.T. & Blanford, Geoffrey J., 2020. "Value of technology in the U.S. electric power sector: Impacts of full portfolios and technological change on the costs of meeting decarbonization goals," Energy Economics, Elsevier, vol. 86(C).
    16. Li, Francis G.N. & Bataille, Chris & Pye, Steve & O'Sullivan, Aidan, 2019. "Prospects for energy economy modelling with big data: Hype, eliminating blind spots, or revolutionising the state of the art?," Applied Energy, Elsevier, vol. 239(C), pages 991-1002.
    17. Bistline, John E.T. & Young, David T., 2020. "Emissions impacts of future battery storage deployment on regional power systems," Applied Energy, Elsevier, vol. 264(C).
    18. John E. T. Bistline & Geoffrey Blanford & John Grant & Eladio Knipping & David L. McCollum & Uarporn Nopmongcol & Heidi Scarth & Tejas Shah & Greg Yarwood, 2022. "Economy-wide evaluation of CO2 and air quality impacts of electrification in the United States," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    19. Kassel, Drew A. & Rhodes, Joshua D. & Webber, Michael E., 2025. "A method to analyze the costs and emissions tradeoffs of connecting ERCOT to WECC," Applied Energy, Elsevier, vol. 378(PA).
    20. Edmonds, James & Nichols, Christopher & Adamantiades, Misha & Bistline, John & Huster, Jonathan & Iyer, Gokul & Johnson, Nils & Patel, Pralit & Showalter, Sharon & Victor, Nadja & Waldhoff, Stephanie , 2020. "Could congressionally mandated incentives lead to deployment of large-scale CO2 capture, facilities for enhanced oil recovery CO2 markets and geologic CO2 storage?," Energy Policy, Elsevier, vol. 146(C).
    21. Bistline, John & Blanford, Geoffrey & Mai, Trieu & Merrick, James, 2021. "Modeling variable renewable energy and storage in the power sector," Energy Policy, Elsevier, vol. 156(C).
    22. Mai, Trieu & Bistline, John & Sun, Yinong & Cole, Wesley & Marcy, Cara & Namovicz, Chris & Young, David, 2018. "The role of input assumptions and model structures in projections of variable renewable energy: A multi-model perspective of the U.S. electricity system," Energy Economics, Elsevier, vol. 76(C), pages 313-324.
    23. Mallapragada, Dharik S. & Sepulveda, Nestor A. & Jenkins, Jesse D., 2020. "Long-run system value of battery energy storage in future grids with increasing wind and solar generation," Applied Energy, Elsevier, vol. 275(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Seljom, Pernille & Lind, Arne & Wagner, Fabian & Mesfun, Sennai, 2020. "Short-term solar and wind variability in long-term energy system models - A European case study," Energy, Elsevier, vol. 209(C).
    2. Teichgraeber, Holger & Brandt, Adam R., 2022. "Time-series aggregation for the optimization of energy systems: Goals, challenges, approaches, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    3. Merrick, James H., 2016. "On representation of temporal variability in electricity capacity planning models," Energy Economics, Elsevier, vol. 59(C), pages 261-274.
    4. Collins, Seán & Deane, John Paul & Poncelet, Kris & Panos, Evangelos & Pietzcker, Robert C. & Delarue, Erik & Ó Gallachóir, Brian Pádraig, 2017. "Integrating short term variations of the power system into integrated energy system models: A methodological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 839-856.
    5. Kittel, Martin & Hobbie, Hannes & Dierstein, Constantin, 2022. "Temporal aggregation of time series to identify typical hourly electricity system states: A systematic assessment of relevant cluster algorithms," Energy, Elsevier, vol. 247(C).
    6. Kittel, Martin & Hobbie, Hannes & Dierstein, Constantin, 2022. "Temporal aggregation of time series to identify typical hourly electricity system states: A systematic assessment of relevant cluster algorithms," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 247, pages 1-15.
    7. Clemens Gerbaulet & Casimir Lorenz, 2017. "dynELMOD: A Dynamic Investment and Dispatch Model for the Future European Electricity Market," Data Documentation 88, DIW Berlin, German Institute for Economic Research.
    8. Julia K. Szinai & David Yates & Pedro A. Sánchez-Pérez & Martin Staadecker & Daniel M. Kammen & Andrew D. Jones & Patricia Hidalgo-Gonzalez, 2024. "Climate change and its influence on water systems increases the cost of electricity system decarbonization," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    11. Iegor Riepin & Thomas Mobius & Felix Musgens, 2020. "Modelling uncertainty in coupled electricity and gas systems -- is it worth the effort?," Papers 2008.07221, arXiv.org, revised Sep 2020.
    12. Simshauser, Paul, 2024. "On static vs. dynamic line ratings in renewable energy zones," Energy Economics, Elsevier, vol. 129(C).
    13. Alimou, Yacine & Maïzi, Nadia & Bourmaud, Jean-Yves & Li, Marion, 2020. "Assessing the security of electricity supply through multi-scale modeling: The TIMES-ANTARES linking approach," Applied Energy, Elsevier, vol. 279(C).
    14. Fürsch, Michaela & Hagspiel, Simeon & Jägemann, Cosima & Nagl, Stephan & Lindenberger, Dietmar & Tröster, Eckehard, 2013. "The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050," Applied Energy, Elsevier, vol. 104(C), pages 642-652.
    15. Knopf, Brigitte & Nahmmacher, Paul & Schmid, Eva, 2015. "The European renewable energy target for 2030 – An impact assessment of the electricity sector," Energy Policy, Elsevier, vol. 85(C), pages 50-60.
    16. van der Zwaan, Bob & Kober, Tom & Calderon, Silvia & Clarke, Leon & Daenzer, Katie & Kitous, Alban & Labriet, Maryse & Lucena, André F.P. & Octaviano, Claudia & Di Sbroiavacca, Nicolas, 2016. "Energy technology roll-out for climate change mitigation: A multi-model study for Latin America," Energy Economics, Elsevier, vol. 56(C), pages 526-542.
    17. Arjmand, Reza & Monroe, Jacob & McPherson, Madeleine, 2023. "The role of emerging technologies in Canada's electricity system transition," Energy, Elsevier, vol. 278(PA).
    18. Gurkan, G. & Langestraat, R., 2013. "Modeling And Analysis Of Renewable Energy Obligations And Technology Bandings In the UK Electricity Market," Discussion Paper 2013-016, Tilburg University, Center for Economic Research.
    19. Merrick, James H. & Bistline, John E.T. & Blanford, Geoffrey J., 2024. "On representation of energy storage in electricity planning models," Energy Economics, Elsevier, vol. 136(C).
    20. Seyed Reza Mirnezami & Amin Mohseni Cheraghlou, 2022. "Wind Power in Iran: Technical, Policy, and Financial Aspects for Better Energy Resource Management," Energies, MDPI, vol. 15(9), pages 1-18, April.

    More about this item

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aen:journl:ej39-3-blanfor. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Williams (email available below). General contact details of provider: https://edirc.repec.org/data/iaeeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.