IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33902-9.html
   My bibliography  Save this article

Economy-wide evaluation of CO2 and air quality impacts of electrification in the United States

Author

Listed:
  • John E. T. Bistline

    (Electric Power Research Institute)

  • Geoffrey Blanford

    (Electric Power Research Institute)

  • John Grant

    (Ramboll, 7250 Redwood Blvd.)

  • Eladio Knipping

    (Electric Power Research Institute)

  • David L. McCollum

    (Oak Ridge National Laboratory)

  • Uarporn Nopmongcol

    (Ramboll, 7250 Redwood Blvd.)

  • Heidi Scarth

    (Electric Power Research Institute)

  • Tejas Shah

    (Ramboll, 7250 Redwood Blvd.)

  • Greg Yarwood

    (Ramboll, 7250 Redwood Blvd.)

Abstract

Adopting electric end-use technologies instead of fossil-fueled alternatives, known as electrification, is an important economy-wide decarbonization strategy that also reduces criteria pollutant emissions and improves air quality. In this study, we evaluate CO2 and air quality co-benefits of electrification scenarios by linking a detailed energy systems model and a full-form photochemical air quality model in the United States. We find that electrification can substantially lower CO2 and improve air quality and that decarbonization policy can amplify these trends, which yield immediate and localized benefits. In particular, transport electrification can improve ozone and fine particulate matter (PM2.5), though the magnitude of changes varies regionally. However, growing activity from non-energy-related PM2.5 sources—such as fugitive dust and agricultural emissions—can offset electrification benefits, suggesting that additional measures beyond CO2 policy and electrification are needed to meet air quality goals. We illustrate how commonly used marginal emissions approaches systematically underestimate reductions from electrification.

Suggested Citation

  • John E. T. Bistline & Geoffrey Blanford & John Grant & Eladio Knipping & David L. McCollum & Uarporn Nopmongcol & Heidi Scarth & Tejas Shah & Greg Yarwood, 2022. "Economy-wide evaluation of CO2 and air quality impacts of electrification in the United States," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33902-9
    DOI: 10.1038/s41467-022-33902-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33902-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33902-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexander R. Barron & Allen A. Fawcett & Marc A. C. Hafstead & James R. Mcfarland & Adele C. Morris, 2018. "Policy Insights From The Emf 32 Study On U.S. Carbon Tax Scenarios," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-47, February.
    2. Mine Isik & Rebecca Dodder & P. Ozge Kaplan, 2021. "Transportation emissions scenarios for New York City under different carbon intensities of electricity and electric vehicle adoption rates," Nature Energy, Nature, vol. 6(1), pages 92-104, January.
    3. John E. T. Bistline & Geoffrey J. Blanford, 2021. "Impact of carbon dioxide removal technologies on deep decarbonization of the electric power sector," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Duncan S. Callaway & Meredith Fowlie & Gavin McCormick, 2018. "Location, Location, Location: The Variable Value of Renewable Energy and Demand-Side Efficiency Resources," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(1), pages 39-75.
    5. Geoffrey J. Blanford, James H. Merrick, John E.T. Bistline, and David T. Young, 2018. "Simulating Annual Variation in Load, Wind, and Solar by Representative Hour Selection," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    6. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2016. "Are There Environmental Benefits from Driving Electric Vehicles? The Importance of Local Factors," American Economic Review, American Economic Association, vol. 106(12), pages 3700-3729, December.
    7. Wright, Evelyn & Kanudia, Amit, 2014. "Low carbon standard and transmission investment analysis in the new multi-region US power sector model FACETS," Energy Economics, Elsevier, vol. 46(C), pages 136-150.
    8. Tianyang Wang & Zhe Jiang & Bin Zhao & Yu Gu & Kuo-Nan Liou & Nesamani Kalandiyur & Da Zhang & Yifang Zhu, 2020. "Health co-benefits of achieving sustainable net-zero greenhouse gas emissions in California," Nature Sustainability, Nature, vol. 3(8), pages 597-605, August.
    9. Gunnar Luderer & Zoi Vrontisi & Christoph Bertram & Oreane Y. Edelenbosch & Robert C. Pietzcker & Joeri Rogelj & Harmen Sytze Boer & Laurent Drouet & Johannes Emmerling & Oliver Fricko & Shinichiro Fu, 2018. "Residual fossil CO2 emissions in 1.5–2 °C pathways," Nature Climate Change, Nature, vol. 8(7), pages 626-633, July.
    10. Victor, Nadejda & Nichols, Christopher & Zelek, Charles, 2018. "The U.S. power sector decarbonization: Investigating technology options with MARKAL nine-region model," Energy Economics, Elsevier, vol. 73(C), pages 410-425.
    11. S. Pye & O. Broad & C. Bataille & P. Brockway & H. E. Daly & R. Freeman & A. Gambhir & O. Geden & F. Rogan & S. Sanghvi & J. Tomei & I. Vorushylo & J. Watson, 2021. "Modelling net-zero emissions energy systems requires a change in approach," Climate Policy, Taylor & Francis Journals, vol. 21(2), pages 222-231, February.
    12. Ou, Yang & Shi, Wenjing & Smith, Steven J. & Ledna, Catherine M. & West, J. Jason & Nolte, Christopher G. & Loughlin, Daniel H., 2018. "Estimating environmental co-benefits of U.S. low-carbon pathways using an integrated assessment model with state-level resolution," Applied Energy, Elsevier, vol. 216(C), pages 482-493.
    13. Varun Rai & Adam Douglas Henry, 2016. "Agent-based modelling of consumer energy choices," Nature Climate Change, Nature, vol. 6(6), pages 556-562, June.
    14. Tammy M. Thompson & Sebastian Rausch & Rebecca K. Saari & Noelle E. Selin, 2014. "A systems approach to evaluating the air quality co-benefits of US carbon policies," Nature Climate Change, Nature, vol. 4(10), pages 917-923, October.
    15. Davis, Steven J & Lewis, Nathan S. & Shaner, Matthew & Aggarwal, Sonia & Arent, Doug & Azevedo, Inês & Benson, Sally & Bradley, Thomas & Brouwer, Jack & Chiang, Yet-Ming & Clack, Christopher T.M. & Co, 2018. "Net-Zero Emissions Energy Systems," Institute of Transportation Studies, Working Paper Series qt7qv6q35r, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maxwell Woody & Gregory A. Keoleian & Parth Vaishnav, 2023. "Decarbonization potential of electrifying 50% of U.S. light-duty vehicle sales by 2030," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Powell, Siobhan & Martin, Sonia & Rajagopal, Ram & Azevedo, Inês M.L. & de Chalendar, Jacques, 2024. "Future-proof rates for controlled electric vehicle charging: Comparing multi-year impacts of different emission factor signals," Energy Policy, Elsevier, vol. 190(C).
    3. Maxwell Woody & Shawn A. Adderly & Rushabh Bohra & Gregory A. Keoleian, 2024. "Electric and gasoline vehicle total cost of ownership across US cities," Journal of Industrial Ecology, Yale University, vol. 28(2), pages 194-215, April.
    4. Kieran Winter & Zhirong Liao & Erik Abbá & Jose A. Robles Linares & Dragos Axinte, 2024. "Effect of sub-micron deformations at opposing strain rates on the micromagnetic behaviour of non-oriented electrical steel," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. John Bistlinea & Chikara Onda & Morgan Browning & Johannes Emmerling & Gokul Iyer & Megan Mahajan & Jim McFarland & Haewon McJeon & Robbie Orvis & Francisco Ralston Fonseca & Christopher Roney & Noah , 2024. "Equity Implications of Net-Zero Emissions: A Multi-Model Analysis of Energy Expenditures Across Income Classes Under Economy-Wide Deep Decarbonization Policies," Papers 2405.18748, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oshiro, Ken & Fujimori, Shinichiro, 2022. "Role of hydrogen-based energy carriers as an alternative option to reduce residual emissions associated with mid-century decarbonization goals," Applied Energy, Elsevier, vol. 313(C).
    2. John E. T. Bistline & David T. Young, 2022. "The role of natural gas in reaching net-zero emissions in the electric sector," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Bryan K. Mignone & Leon Clarke & James A. Edmonds & Angelo Gurgel & Howard J. Herzog & Jeremiah X. Johnson & Dharik S. Mallapragada & Haewon McJeon & Jennifer Morris & Patrick R. O’Rourke & Sergey Pal, 2024. "Drivers and implications of alternative routes to fuels decarbonization in net-zero energy systems," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Shu, David Yang & Deutz, Sarah & Winter, Benedikt Alexander & Baumgärtner, Nils & Leenders, Ludger & Bardow, André, 2023. "The role of carbon capture and storage to achieve net-zero energy systems: Trade-offs between economics and the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    5. Fang, Yan Ru & Peng, Wei & Urpelainen, Johannes & Hossain, M.S. & Qin, Yue & Ma, Teng & Ren, Ming & Liu, Xiaorui & Zhang, Silu & Huang, Chen & Dai, Hancheng, 2023. "Neutralizing China's transportation sector requires combined decarbonization efforts from power and hydrogen supply," Applied Energy, Elsevier, vol. 349(C).
    6. Bistline, John & Blanford, Geoffrey & Mai, Trieu & Merrick, James, 2021. "Modeling variable renewable energy and storage in the power sector," Energy Policy, Elsevier, vol. 156(C).
    7. Ou, Yang & Kittner, Noah & Babaee, Samaneh & Smith, Steven J. & Nolte, Christopher G. & Loughlin, Daniel H., 2021. "Evaluating long-term emission impacts of large-scale electric vehicle deployment in the US using a human-Earth systems model," Applied Energy, Elsevier, vol. 300(C).
    8. Aldy, Joseph E. & Burtraw, Dallas & Fischer, Carolyn & Fowlie, Meredith & Williams, Roberton C. & Cropper, Maureen L., 2022. "How is the U.S. Pricing Carbon? How Could We Price Carbon?," Journal of Benefit-Cost Analysis, Cambridge University Press, vol. 13(3), pages 310-334, October.
    9. Yang Ou & Christopher Roney & Jameel Alsalam & Katherine Calvin & Jared Creason & Jae Edmonds & Allen A. Fawcett & Page Kyle & Kanishka Narayan & Patrick O’Rourke & Pralit Patel & Shaun Ragnauth & Ste, 2021. "Deep mitigation of CO2 and non-CO2 greenhouse gases toward 1.5 °C and 2 °C futures," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    10. Bistline, John E.T. & Young, David T., 2020. "Emissions impacts of future battery storage deployment on regional power systems," Applied Energy, Elsevier, vol. 264(C).
    11. Arent, Douglas J. & Green, Peter & Abdullah, Zia & Barnes, Teresa & Bauer, Sage & Bernstein, Andrey & Berry, Derek & Berry, Joe & Burrell, Tony & Carpenter, Birdie & Cochran, Jaquelin & Cortright, Ran, 2022. "Challenges and opportunities in decarbonizing the U.S. energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    12. McRae, Shaun D. & Wolak, Frank A., 2021. "Retail pricing in Colombia to support the efficient deployment of distributed generation and electric stoves," Journal of Environmental Economics and Management, Elsevier, vol. 110(C).
    13. Toon Vandyck & Kimon Keramidas & Stéphane Tchung-Ming & Matthias Weitzel & Rita Dingenen, 2020. "Quantifying air quality co-benefits of climate policy across sectors and regions," Climatic Change, Springer, vol. 163(3), pages 1501-1517, December.
    14. Zwickl-Bernhard, Sebastian & Auer, Hans, 2022. "Demystifying natural gas distribution grid decommissioning: An open-source approach to local deep decarbonization of urban neighborhoods," Energy, Elsevier, vol. 238(PB).
    15. Grubert, E. & Zacarias, M., 2022. "Paradigm shifts for environmental assessment of decarbonizing energy systems: Emerging dominance of embodied impacts and design-oriented decision support needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    16. Aljoša Slameršak & Giorgos Kallis & Daniel W. O’Neill, 2022. "Energy requirements and carbon emissions for a low-carbon energy transition," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    17. Holland, Stephen P. & Mansur, Erin T. & Muller, Nicholas Z. & Yates, Andrew J., 2021. "The environmental benefits of transportation electrification: Urban buses," Energy Policy, Elsevier, vol. 148(PA).
    18. Sindhwani, Rahul & Singh, Punj Lata & Behl, Abhishek & Afridi, Mohd. Shayan & Sammanit, Debaroti & Tiwari, Aviral Kumar, 2022. "Modeling the critical success factors of implementing net zero emission (NZE) and promoting resilience and social value creation," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    19. Ruixue Liu & Guannan He & Xizhe Wang & Dharik Mallapragada & Hongbo Zhao & Yang Shao-Horn & Benben Jiang, 2024. "A cross-scale framework for evaluating flexibility values of battery and fuel cell electric vehicles," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    20. Harrison Fell & Daniel T. Kaffine & Kevin Novan, 2021. "Emissions, Transmission, and the Environmental Value of Renewable Energy," American Economic Journal: Economic Policy, American Economic Association, vol. 13(2), pages 241-272, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33902-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.