IDEAS home Printed from https://ideas.repec.org/p/dui/wpaper/1104.html
   My bibliography  Save this paper

Efficient storage capacity in power systems with thermal and renewable generation

Author

Listed:
  • Bjarne Steffen

    ()

  • Christoph Weber

    () (Chair for Management Sciences and Energy Economics, University of Duisburg-Essen)

Abstract

Power systems with high shares of wind and solar power have to balance their intermittent nature. Pumped†hydro storage plants can provide the required flexibility, while thermal backup plants offer an alternative. This paper proposes a model based on peak†load†pricing theory to describe the efficient technology portfolio. Drawing on a load duration curve, we derive the efficient storage capacity and discuss its dependence on cost parameters. It is shown that renewable generation affects the efficient storage capacity by changing the shape of the residual load duration curve, while limited time periods with renewable generation in excess of load do not necessarily affect the level of storage. A case study for Germany applies the model and highlights the impact of CO2 prices on storage efficiency.

Suggested Citation

  • Bjarne Steffen & Christoph Weber, 2011. "Efficient storage capacity in power systems with thermal and renewable generation," EWL Working Papers 1104, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Aug 2011.
  • Handle: RePEc:dui:wpaper:1104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988312002812
    File Function: First version, 2011
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Malte Sunderkoetter & Christoph Weber, 2009. "Valuing fuel diversification in optimal investment policies for electricity generation portfolios," EWL Working Papers 0904, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Nov 2009.
    2. Chao, Hung-po & Wilson, Robert, 1987. "Priority Service: Pricing, Investment, and Market Organization," American Economic Review, American Economic Association, vol. 77(5), pages 899-916, December.
    3. Horsley, Anthony & Wrobel, Andrew J., 2002. "Efficiency rents of pumped-storage plants and their uses for operation and investment decisions," Journal of Economic Dynamics and Control, Elsevier, vol. 27(1), pages 109-142, November.
    4. Nyamdash, Batsaikhan & Denny, Eleanor & O'Malley, Mark, 2010. "The viability of balancing wind generation with large scale energy storage," Energy Policy, Elsevier, vol. 38(11), pages 7200-7208, November.
    5. Sioshansi, Ramteen & Denholm, Paul & Jenkin, Thomas & Weiss, Jurgen, 2009. "Estimating the value of electricity storage in PJM: Arbitrage and some welfare effects," Energy Economics, Elsevier, vol. 31(2), pages 269-277, March.
    6. Petter Bjerksund & Gunnar Stensland & Frank Vagstad, 2011. "Gas Storage Valuation: Price Modelling v. Optimization Methods," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 203-228.
    7. Gravelle, H S E, 1976. "The Peak Load Problem with Feasible Storage," Economic Journal, Royal Economic Society, vol. 86(342), pages 256-277, June.
    8. Yang, Chi-Jen & Jackson, Robert B., 2011. "Opportunities and barriers to pumped-hydro energy storage in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 839-844, January.
    9. Crampes, Claude & Moreaux, Michel, 2010. "Pumped storage and cost saving," Energy Economics, Elsevier, vol. 32(2), pages 325-333, March.
    10. Hung-po Chao, 1983. "Peak Load Pricing and Capacity Planning with Demand and Supply Uncertainty," Bell Journal of Economics, The RAND Corporation, vol. 14(1), pages 179-190, Spring.
    11. Steffen, Bjarne, 2012. "Prospects for pumped-hydro storage in Germany," Energy Policy, Elsevier, vol. 45(C), pages 420-429.
    12. Kleindorfer, Paul R & Fernando, Chitru S, 1993. "Peak-Load Pricing and Reliability under Uncertainty," Journal of Regulatory Economics, Springer, vol. 5(1), pages 5-23, March.
    13. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    14. Sunderkötter, Malte & Weber, Christoph, 2012. "Valuing fuel diversification in power generation capacity planning," Energy Economics, Elsevier, vol. 34(5), pages 1664-1674.
    15. Tuohy, A. & O'Malley, M., 2011. "Pumped storage in systems with very high wind penetration," Energy Policy, Elsevier, vol. 39(4), pages 1965-1974, April.
    16. Sioshansi, Ramteen & Denholm, Paul & Jenkin, Thomas, 2011. "A comparative analysis of the value of pure and hybrid electricity storage," Energy Economics, Elsevier, vol. 33(1), pages 56-66, January.
    17. Ramteen Sioshansi, 2010. "Welfare Impacts of Electricity Storage and the Implications of Ownership Structure," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 173-198.
    18. Deane, J.P. & Ó Gallachóir, B.P. & McKeogh, E.J., 2010. "Techno-economic review of existing and new pumped hydro energy storage plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1293-1302, May.
    19. Crew, Michael A & Fernando, Chitru S & Kleindorfer, Paul R, 1995. "The Theory of Peak-Load Pricing: A Survey," Journal of Regulatory Economics, Springer, vol. 8(3), pages 215-248, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steffen, Bjarne & Weber, Christoph, 2016. "Optimal operation of pumped-hydro storage plants with continuous time-varying power prices," European Journal of Operational Research, Elsevier, vol. 252(1), pages 308-321.
    2. Tilmann Rave & Ursula Triebswetter & Johann Wackerbauer, 2013. "Koordination von Innovations-, Energie- und Umweltpolitik," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 61, October.
    3. repec:eee:rensus:v:80:y:2017:i:c:p:603-619 is not listed on IDEAS
    4. Steffen, Bjarne, 2012. "Prospects for pumped-hydro storage in Germany," Energy Policy, Elsevier, vol. 45(C), pages 420-429.
    5. Durmaz, Tunç, 2016. "Precautionary Storage in Electricity Markets," Discussion Papers 2016/5, Norwegian School of Economics, Department of Business and Management Science.
    6. Schill, Wolf-Peter, 2014. "Residual Load, Renewable Surplus Generation and Storage Requirements in Germany," EconStor Open Access Articles, ZBW - German National Library of Economics, pages 65-79.
    7. repec:eee:rensus:v:79:y:2017:i:c:p:1518-1534 is not listed on IDEAS
    8. Kondziella, Hendrik & Bruckner, Thomas, 2016. "Flexibility requirements of renewable energy based electricity systems – a review of research results and methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 10-22.
    9. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    10. Andreas A. Renz & Christoph Weber, 2012. "A Hotelling Model for Fixed-Cost Driven Power Generation," EWL Working Papers 1206, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Jan 2013.
    11. Inzunza, Andrés & Moreno, Rodrigo & Bernales, Alejandro & Rudnick, Hugh, 2016. "CVaR constrained planning of renewable generation with consideration of system inertial response, reserve services and demand participation," Energy Economics, Elsevier, vol. 59(C), pages 104-117.
    12. Bjarne Steffen, 2011. "Prospects for pumped-hydro storage in Germany," EWL Working Papers 1107, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Dec 2011.
    13. Zerrahn, Alexander & Schill, Wolf-Peter, 2017. "Long-run power storage requirements for high shares of renewables: review and a new model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1518-1534.
    14. Kotowicz, Janusz & Bartela, Łukasz & Węcel, Daniel & Dubiel, Klaudia, 2017. "Hydrogen generator characteristics for storage of renewably-generated energy," Energy, Elsevier, vol. 118(C), pages 156-171.

    More about this item

    Keywords

    electricity storage; peak†load†pricing; renewable energy;

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dui:wpaper:1104. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Andreas Fritz). General contact details of provider: http://edirc.repec.org/data/fwessde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.