IDEAS home Printed from https://ideas.repec.org/p/dui/wpaper/0904.html
   My bibliography  Save this paper

Valuing fuel diversification in optimal investment policies for electricity generation portfolios

Author

Listed:
  • Malte Sunderkoetter

    ()

  • Christoph Weber

    () (Chair for Management Sciences and Energy Economics, University of Duisburg-Essen)

Abstract

Optimal capacity allocation for investments in electricity generation assets can be deterministically derived by comparing technology specific long-term and short-term marginal costs. In an uncertain market environment, Mean-Variance Portfolio (MVP) theory provides a consistent framework to valuate financial risks in power generation portfolios that allows to derive the efficient fuel mix of a system portfolio with different generation technologies from a welfare maximization perspective. Because existing literature on MVP applications in electricity generation markets uses predominantly numerical methods to characterize portfolio risks, this article presents a novel analytical approach combining conceptual elements of peak-load pricing and MVP theory to derive optimal portfolios consisting of an arbitrary number of plant technologies given uncertain fuel prices. For this purpose, we provide a static optimization model which allows to fully capture fuel price risks in a mean variance portfolio framework. The analytically derived optimality conditions contribute to a much better understanding of the optimal investment policy and its risk characteristics compared to existing numerical methods. Furthermore, we demonstrate an application of the proposed framework and results to the German electricity market which has not yet been treated in MVP literature on electricity markets.

Suggested Citation

  • Malte Sunderkoetter & Christoph Weber, 2009. "Valuing fuel diversification in optimal investment policies for electricity generation portfolios," EWL Working Papers 0904, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Nov 2009.
  • Handle: RePEc:dui:wpaper:0904
    as

    Download full text from publisher

    File URL: http://www.wiwi.uni-due.de/fileadmin/fileupload/BWL-ENERGIE/Arbeitspapiere/RePEc/pdf/wp0904_Valuing_Diversification_In_Generation_Portfolios.pdf
    File Function: First version, 2009
    Download Restriction: no

    References listed on IDEAS

    as
    1. Stirling, Andrew, 1994. "Diversity and ignorance in electricity supply investment : Addressing the solution rather than the problem," Energy Policy, Elsevier, vol. 22(3), pages 195-216, March.
    2. Fabien A. Roques & William J. Nuttall & David M. Newbery & Richard de Neufville & Stephen Connors, 2006. "Nuclear Power: A Hedge against Uncertain Gas and Carbon Prices?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 1-24.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steffen, Bjarne & Weber, Christoph, 2013. "Efficient storage capacity in power systems with thermal and renewable generation," Energy Economics, Elsevier, vol. 36(C), pages 556-567.
    2. Malte Sunderk├â┬Âtter & Christoph Weber, 2011. "Mean-Variance optimization of power generation portfolios under uncertainty in the merit order," EWL Working Papers 1105, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Oct 2011.

    More about this item

    Keywords

    power plant investments; peak load pricing; mean-variance portfolio theory; fuel mix diversification;

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dui:wpaper:0904. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Andreas Fritz). General contact details of provider: http://edirc.repec.org/data/fwessde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.