IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v269y2023ics0360544222034910.html
   My bibliography  Save this article

Study on fracture evolution model of the enhanced geothermal system under thermal-hydraulic-chemical-deformation coupling

Author

Listed:
  • Ji, Jiayan
  • Song, Xianzhi
  • Song, Guofeng
  • Xu, Fuqiang
  • Shi, Yu
  • Lv, Zehao
  • Li, Shuang
  • Yi, Junlin

Abstract

The fractures are the main flow and heat transfer channel for fluids in deep high-temperature enhanced geothermal systems (EGS). The deformation of the fracture controlled by reactive flow is a common phenomenon during geothermal development, which might lead to a reduction in the system's thermal performance and operating life.

Suggested Citation

  • Ji, Jiayan & Song, Xianzhi & Song, Guofeng & Xu, Fuqiang & Shi, Yu & Lv, Zehao & Li, Shuang & Yi, Junlin, 2023. "Study on fracture evolution model of the enhanced geothermal system under thermal-hydraulic-chemical-deformation coupling," Energy, Elsevier, vol. 269(C).
  • Handle: RePEc:eee:energy:v:269:y:2023:i:c:s0360544222034910
    DOI: 10.1016/j.energy.2022.126604
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222034910
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126604?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Tianfu & Yuan, Yilong & Jia, Xiaofeng & Lei, Yude & Li, Shengtao & Feng, Bo & Hou, Zhaoyun & Jiang, Zhenjiao, 2018. "Prospects of power generation from an enhanced geothermal system by water circulation through two horizontal wells: A case study in the Gonghe Basin, Qinghai Province, China," Energy, Elsevier, vol. 148(C), pages 196-207.
    2. Lu, Shyi-Min, 2018. "A global review of enhanced geothermal system (EGS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2902-2921.
    3. Song, Guofeng & Song, Xianzhi & Ji, Jiayan & Wu, Xiaoguang & Li, Gensheng & Xu, Fuqiang & Shi, Yu & Wang, Gaosheng, 2022. "Evolution of fracture aperture and thermal productivity influenced by chemical reaction in enhanced geothermal system," Renewable Energy, Elsevier, vol. 186(C), pages 126-142.
    4. Kang, Fangchao & Li, Yingchun & Tang, Chun'an & Huang, Xin & Li, Tianjiao, 2022. "Competition between cooling contraction and fluid overpressure on aperture evolution in a geothermal system," Renewable Energy, Elsevier, vol. 186(C), pages 704-716.
    5. Wu, Yu & Li, Pan & Hao, Yang & Wanniarachchi, Ayal & Zhang, Yan & Peng, Shuhua, 2021. "Experimental research on carbon storage in a CO2-Based enhanced geothermal system," Renewable Energy, Elsevier, vol. 175(C), pages 68-79.
    6. Li, Jiawei & Sun, Zhixue & Zhang, Yin & Jiang, Chuanyin & Cherubini, Claudia & Scheuermann, Alexander & Torres, Sergio Andres Galindo & Li, Ling, 2019. "Investigations of heat extraction for water and CO2 flow based on the rough-walled discrete fracture network," Energy, Elsevier, vol. 189(C).
    7. Gong, Facheng & Guo, Tiankui & Sun, Wei & Li, Zhaomin & Yang, Bin & Chen, Yimei & Qu, Zhanqing, 2020. "Evaluation of geothermal energy extraction in Enhanced Geothermal System (EGS) with multiple fracturing horizontal wells (MFHW)," Renewable Energy, Elsevier, vol. 151(C), pages 1339-1351.
    8. Melikoglu, Mehmet, 2017. "Geothermal energy in Turkey and around the World: A review of the literature and an analysis based on Turkey's Vision 2023 energy targets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 485-492.
    9. Pambudi, Nugroho Agung, 2018. "Geothermal power generation in Indonesia, a country within the ring of fire: Current status, future development and policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2893-2901.
    10. Zhu, Jialing & Hu, Kaiyong & Lu, Xinli & Huang, Xiaoxue & Liu, Ketao & Wu, Xiujie, 2015. "A review of geothermal energy resources, development, and applications in China: Current status and prospects," Energy, Elsevier, vol. 93(P1), pages 466-483.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji, Jiayan & Song, Xianzhi & Li, Shuang & Xu, Fuqiang & Song, Guofeng & Shi, Yu & Yi, Junlin, 2023. "Study on the effect of fracture morphology on fracture deformation based on the thermal-hydraulic-chemical-deformation coupling model," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji, Jiayan & Song, Xianzhi & Li, Shuang & Xu, Fuqiang & Song, Guofeng & Shi, Yu & Yi, Junlin, 2023. "Study on the effect of fracture morphology on fracture deformation based on the thermal-hydraulic-chemical-deformation coupling model," Energy, Elsevier, vol. 282(C).
    2. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu & Liu, Xuemei & Liu, Hongliang, 2020. "Analysis on the heat extraction performance of multi-well injection enhanced geothermal system based on leaf-like bifurcated fracture networks," Energy, Elsevier, vol. 213(C).
    3. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu, 2020. "Study on the effect of well layout schemes and fracture parameters on the heat extraction performance of enhanced geothermal system in fractured reservoir," Energy, Elsevier, vol. 202(C).
    4. Wang, Gaosheng & Song, Xianzhi & Shi, Yu & Yang, Ruiyue & Yulong, Feixue & Zheng, Rui & Li, Jiacheng, 2021. "Heat extraction analysis of a novel multilateral-well coaxial closed-loop geothermal system," Renewable Energy, Elsevier, vol. 163(C), pages 974-986.
    5. Xue, Zhenqian & Zhang, Kai & Zhang, Chi & Ma, Haoming & Chen, Zhangxin, 2023. "Comparative data-driven enhanced geothermal systems forecasting models: A case study of Qiabuqia field in China," Energy, Elsevier, vol. 280(C).
    6. Damian Janiga & Jakub Kwaśnik & Paweł Wojnarowski, 2022. "Utilization of Discrete Fracture Network (DFN) in Modelling and Simulation of a Horizontal Well-Doublet Enhanced Geothermal System (EGS) with Sensitivity Analysis of Key Production Parameters," Energies, MDPI, vol. 15(23), pages 1-19, November.
    7. Zhou, Luming & Zhu, Zhende & Xie, Xinghua & Hu, Yunjin, 2022. "Coupled thermal–hydraulic–mechanical model for an enhanced geothermal system and numerical analysis of its heat mining performance," Renewable Energy, Elsevier, vol. 181(C), pages 1440-1458.
    8. Li, Xinxin & Li, Chengyu & Gong, Wenping & Zhang, Yanjie & Wang, Junchao, 2023. "Probabilistic analysis of heat extraction performance in enhanced geothermal system based on a DFN-based modeling scheme," Energy, Elsevier, vol. 263(PC).
    9. Wang, Ling & Jiang, Zhenjiao & Li, Chengying, 2023. "Comparative study on effects of macroscopic and microscopic fracture structures on the performance of enhanced geothermal systems," Energy, Elsevier, vol. 274(C).
    10. Linkai Li & Xiao Guo & Ming Zhou & Gang Xiang & Ning Zhang & Yue Wang & Shengyuan Wang & Arnold Landjobo Pagou, 2021. "The Investigation of Fracture Networks on Heat Extraction Performance for an Enhanced Geothermal System," Energies, MDPI, vol. 14(6), pages 1-18, March.
    11. Xie, Yingchun & Nie, Yutai & Li, Tailu & Zhang, Yao & Wang, Jingyi, 2023. "Flash evaporation strategy of organic Rankine cycle for geothermal power performance enhancement: A case study," Renewable Energy, Elsevier, vol. 212(C), pages 57-69.
    12. Chen, Tairu & Liu, Gang & Liao, Shengming, 2019. "Impacts of boundary conditions on reservoir numerical simulation and performance prediction of enhanced geothermal systems," Energy, Elsevier, vol. 181(C), pages 202-213.
    13. Soltani, M. & Moradi Kashkooli, Farshad & Souri, Mohammad & Rafiei, Behnam & Jabarifar, Mohammad & Gharali, Kobra & Nathwani, Jatin S., 2021. "Environmental, economic, and social impacts of geothermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    14. Wang, Yongzhen & Li, Chengjun & Zhao, Jun & Wu, Boyuan & Du, Yanping & Zhang, Jing & Zhu, Yilin, 2021. "The above-ground strategies to approach the goal of geothermal power generation in China: State of art and future researches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    15. Tailu Li & Xuelong Li & Haiyang Gao & Xiang Gao & Nan Meng, 2022. "Thermodynamic Performance of Geothermal Energy Cascade Utilization for Combined Heating and Power Based on Organic Rankine Cycle and Vapor Compression Cycle," Energies, MDPI, vol. 15(19), pages 1-24, October.
    16. Hu, Zixu & Xu, Tianfu & Feng, Bo & Yuan, Yilong & Li, Fengyu & Feng, Guanhong & Jiang, Zhenjiao, 2020. "Thermal and fluid processes in a closed-loop geothermal system using CO2 as a working fluid," Renewable Energy, Elsevier, vol. 154(C), pages 351-367.
    17. Xia, Liangyu & Zhang, Yabo, 2019. "An overview of world geothermal power generation and a case study on China—The resource and market perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 411-423.
    18. Calise, F. & Di Fraia, S. & Macaluso, A. & Massarotti, N. & Vanoli, L., 2018. "A geothermal energy system for wastewater sludge drying and electricity production in a small island," Energy, Elsevier, vol. 163(C), pages 130-143.
    19. Chen, Heng & Wang, Yihan & Li, Jiarui & Xu, Gang & Lei, Jing & Liu, Tong, 2022. "Thermodynamic analysis and economic assessment of an improved geothermal power system integrated with a biomass-fired cogeneration plant," Energy, Elsevier, vol. 240(C).
    20. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu & Zhang, Haijun, 2020. "Numerical simulation study on the heat extraction performance of multi-well injection enhanced geothermal system," Renewable Energy, Elsevier, vol. 151(C), pages 782-795.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:269:y:2023:i:c:s0360544222034910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.