IDEAS home Printed from
   My bibliography  Save this article

Modeling temporal variations in global residential energy consumption and pollutant emissions


  • Chen, Han
  • Huang, Ye
  • Shen, Huizhong
  • Chen, Yilin
  • Ru, Muye
  • Chen, Yuanchen
  • Lin, Nan
  • Su, Shu
  • Zhuo, Shaojie
  • Zhong, Qirui
  • Wang, Xilong
  • Liu, Junfeng
  • Li, Bengang
  • Tao, Shu


Energy data are often reported on an annual basis. To address the climate and health impacts of greenhouse gases and air pollutants, seasonally resolved emissions inventories are needed. The seasonality of energy consumption is most affected by consumption in the residential sector. In this study, a set of regression models were developed based on temperature-related variables and a series of socioeconomic parameters to quantify global electricity and fuel consumption for the residential sector. The models were evaluated against observations and applied to simulate monthly changes in residential energy consumption and the resultant emissions of air pollutants. Changes in energy consumption are strongly affected by economic prosperity and population growth. Climate change, electricity prices, and urbanization also affect energy use. Climate warming will cause a net increase in electricity consumption and a decrease in fuel consumption by the residential sector. Consequently, emissions of CO2, SO2, and Hg are predicted to decrease, while emissions of incomplete combustion products are expected to increase. These changes vary regionally.

Suggested Citation

  • Chen, Han & Huang, Ye & Shen, Huizhong & Chen, Yilin & Ru, Muye & Chen, Yuanchen & Lin, Nan & Su, Shu & Zhuo, Shaojie & Zhong, Qirui & Wang, Xilong & Liu, Junfeng & Li, Bengang & Tao, Shu, 2016. "Modeling temporal variations in global residential energy consumption and pollutant emissions," Applied Energy, Elsevier, vol. 184(C), pages 820-829.
  • Handle: RePEc:eee:appene:v:184:y:2016:i:c:p:820-829
    DOI: 10.1016/j.apenergy.2015.10.185

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Dergiades, Theologos & Tsoulfidis, Lefteris, 2008. "Estimating residential demand for electricity in the United States, 1965-2006," Energy Economics, Elsevier, vol. 30(5), pages 2722-2730, September.
    2. Zhu, Dan & Tao, Shu & Wang, Rong & Shen, Huizhong & Huang, Ye & Shen, Guofeng & Wang, Bin & Li, Wei & Zhang, Yanyan & Chen, Han & Chen, Yuanchen & Liu, Junfeng & Li, Bengang & Wang, Xilong & Liu, Wenx, 2013. "Temporal and spatial trends of residential energy consumption and air pollutant emissions in China," Applied Energy, Elsevier, vol. 106(C), pages 17-24.
    3. Bhattacharyya, Subhes C., 2015. "Influence of India’s transformation on residential energy demand," Applied Energy, Elsevier, vol. 143(C), pages 228-237.
    4. Shimoda, Yoshiyuki & Yamaguchi, Yukio & Okamura, Tomo & Taniguchi, Ayako & Yamaguchi, Yohei, 2010. "Prediction of greenhouse gas reduction potential in Japanese residential sector by residential energy end-use model," Applied Energy, Elsevier, vol. 87(6), pages 1944-1952, June.
    5. Enrica De Cian & Elisa Lanzi & Roberto Roson, 2007. "The Impact of Temperature Change on Energy Demand: A Dynamic Panel Analysis," Working Papers 2007.46, Fondazione Eni Enrico Mattei.
    6. Blazquez Leticia & Nina Boogen & Massimo Filippini, 2012. "Residential electricity demand for Spain: new empirical evidence using aggregated data," CEPE Working paper series 12-82, CEPE Center for Energy Policy and Economics, ETH Zurich.
    7. Isaac, Morna & van Vuuren, Detlef P., 2009. "Modeling global residential sector energy demand for heating and air conditioning in the context of climate change," Energy Policy, Elsevier, vol. 37(2), pages 507-521, February.
    8. Andrea Bigano & Francesco Bosello & Giuseppe Marano, 2006. "Energy Demand and Temperature: A Dynamic Panel Analysis," Working Papers 2006.112, Fondazione Eni Enrico Mattei.
    9. Weibin Lin & Bin Chen & Shichao Luo & Li Liang, 2014. "Factor Analysis of Residential Energy Consumption at the Provincial Level in China," Sustainability, MDPI, Open Access Journal, vol. 6(11), pages 1-15, November.
    10. Guta, Dawit Diriba, 2012. "Application of an almost ideal demand system (AIDS) to Ethiopian rural residential energy use: Panel data evidence," Energy Policy, Elsevier, vol. 50(C), pages 528-539.
    11. Alberini, Anna & Gans, Will & Velez-Lopez, Daniel, 2011. "Residential consumption of gas and electricity in the U.S.: The role of prices and income," Energy Economics, Elsevier, vol. 33(5), pages 870-881, September.
    12. Fumo, Nelson & Rafe Biswas, M.A., 2015. "Regression analysis for prediction of residential energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 332-343.
    13. Fikru, Mahelet G. & Gautier, Luis, 2015. "The impact of weather variation on energy consumption in residential houses," Applied Energy, Elsevier, vol. 144(C), pages 19-30.
    14. Bigano, Andrea & Bosello, Francesco & Marano, Giuseppe, 2006. "Energy Demand and Temperature: A Dynamic Panel Analysis," International Energy Markets Working Papers 12117, Fondazione Eni Enrico Mattei (FEEM).
    15. Kannan, Ramachandran & Strachan, Neil, 2009. "Modelling the UK residential energy sector under long-term decarbonisation scenarios: Comparison between energy systems and sectoral modelling approaches," Applied Energy, Elsevier, vol. 86(4), pages 416-428, April.
    16. Olofsson, Thomas & Mahlia, T.M.I., 2012. "Modeling and simulation of the energy use in an occupied residential building in cold climate," Applied Energy, Elsevier, vol. 91(1), pages 432-438.
    17. Kialashaki, Arash & Reisel, John R., 2013. "Modeling of the energy demand of the residential sector in the United States using regression models and artificial neural networks," Applied Energy, Elsevier, vol. 108(C), pages 271-280.
    18. De Cian, Enrica & Lanzi, Elisa & Roson, Roberto, 2007. "The Impact of Temperature Change on Energy Demand: A Dynamic Panel Analysis," Climate Change Modelling and Policy Working Papers 9322, Fondazione Eni Enrico Mattei (FEEM).
    19. Petrick, Sebastian & Rehdanz, Katrin & Tol, Richard S. J., 2010. "The impact of temperature changes on residential energy consumption," Kiel Working Papers 1618, Kiel Institute for the World Economy (IfW).
    20. Lam, Joseph C. & Tang, H.L. & Li, Danny H.W., 2008. "Seasonal variations in residential and commercial sector electricity consumption in Hong Kong," Energy, Elsevier, vol. 33(3), pages 513-523.
    21. Thomas Wilbanks & Paul Leiby & Robert Perlack & J. Ensminger & Sherry Wright, 2007. "Toward an integrated analysis of mitigation and adaptation: some preliminary findings," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(5), pages 713-725, June.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:gam:jsusta:v:9:y:2017:i:10:p:1744-:d:113441 is not listed on IDEAS
    2. repec:spr:nathaz:v:89:y:2017:i:2:d:10.1007_s11069-017-2990-4 is not listed on IDEAS
    3. Chen, Yilin & Shen, Huizhong & Zhong, Qirui & Chen, Han & Huang, Tianbo & Liu, Junfeng & Cheng, Hefa & Zeng, Eddy Y. & Smith, Kirk R. & Tao, Shu, 2016. "Transition of household cookfuels in China from 2010 to 2012," Applied Energy, Elsevier, vol. 184(C), pages 800-809.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:184:y:2016:i:c:p:820-829. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.