IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v184y2016icp820-829.html
   My bibliography  Save this article

Modeling temporal variations in global residential energy consumption and pollutant emissions

Author

Listed:
  • Chen, Han
  • Huang, Ye
  • Shen, Huizhong
  • Chen, Yilin
  • Ru, Muye
  • Chen, Yuanchen
  • Lin, Nan
  • Su, Shu
  • Zhuo, Shaojie
  • Zhong, Qirui
  • Wang, Xilong
  • Liu, Junfeng
  • Li, Bengang
  • Tao, Shu

Abstract

Energy data are often reported on an annual basis. To address the climate and health impacts of greenhouse gases and air pollutants, seasonally resolved emissions inventories are needed. The seasonality of energy consumption is most affected by consumption in the residential sector. In this study, a set of regression models were developed based on temperature-related variables and a series of socioeconomic parameters to quantify global electricity and fuel consumption for the residential sector. The models were evaluated against observations and applied to simulate monthly changes in residential energy consumption and the resultant emissions of air pollutants. Changes in energy consumption are strongly affected by economic prosperity and population growth. Climate change, electricity prices, and urbanization also affect energy use. Climate warming will cause a net increase in electricity consumption and a decrease in fuel consumption by the residential sector. Consequently, emissions of CO2, SO2, and Hg are predicted to decrease, while emissions of incomplete combustion products are expected to increase. These changes vary regionally.

Suggested Citation

  • Chen, Han & Huang, Ye & Shen, Huizhong & Chen, Yilin & Ru, Muye & Chen, Yuanchen & Lin, Nan & Su, Shu & Zhuo, Shaojie & Zhong, Qirui & Wang, Xilong & Liu, Junfeng & Li, Bengang & Tao, Shu, 2016. "Modeling temporal variations in global residential energy consumption and pollutant emissions," Applied Energy, Elsevier, vol. 184(C), pages 820-829.
  • Handle: RePEc:eee:appene:v:184:y:2016:i:c:p:820-829
    DOI: 10.1016/j.apenergy.2015.10.185
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191501435X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.10.185?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Dan & Tao, Shu & Wang, Rong & Shen, Huizhong & Huang, Ye & Shen, Guofeng & Wang, Bin & Li, Wei & Zhang, Yanyan & Chen, Han & Chen, Yuanchen & Liu, Junfeng & Li, Bengang & Wang, Xilong & Liu, Wenx, 2013. "Temporal and spatial trends of residential energy consumption and air pollutant emissions in China," Applied Energy, Elsevier, vol. 106(C), pages 17-24.
    2. Fell, Harrison & Li, Shanjun & Paul, Anthony, 2014. "A new look at residential electricity demand using household expenditure data," International Journal of Industrial Organization, Elsevier, vol. 33(C), pages 37-47.
    3. Enrica De Cian & Elisa Lanzi & Roberto Roson, 2007. "The Impact of Temperature Change on Energy Demand: A Dynamic Panel Analysis," Working Papers 2007.46, Fondazione Eni Enrico Mattei.
    4. Blazquez Leticia & Nina Boogen & Massimo Filippini, 2012. "Residential electricity demand for Spain: new empirical evidence using aggregated data," CEPE Working paper series 12-82, CEPE Center for Energy Policy and Economics, ETH Zurich.
    5. Isaac, Morna & van Vuuren, Detlef P., 2009. "Modeling global residential sector energy demand for heating and air conditioning in the context of climate change," Energy Policy, Elsevier, vol. 37(2), pages 507-521, February.
    6. Alberini, Anna & Gans, Will & Velez-Lopez, Daniel, 2011. "Residential consumption of gas and electricity in the U.S.: The role of prices and income," Energy Economics, Elsevier, vol. 33(5), pages 870-881, September.
    7. Xavier Labandeira & José M. Labeaga & Miguel Rodríguez, 2006. "A Residential Energy Demand System for Spain," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 87-112.
    8. Kannan, Ramachandran & Strachan, Neil, 2009. "Modelling the UK residential energy sector under long-term decarbonisation scenarios: Comparison between energy systems and sectoral modelling approaches," Applied Energy, Elsevier, vol. 86(4), pages 416-428, April.
    9. Olofsson, Thomas & Mahlia, T.M.I., 2012. "Modeling and simulation of the energy use in an occupied residential building in cold climate," Applied Energy, Elsevier, vol. 91(1), pages 432-438.
    10. Petrick, Sebastian & Rehdanz, Katrin & Tol, Richard S. J., 2010. "The impact of temperature changes on residential energy consumption," Kiel Working Papers 1618, Kiel Institute for the World Economy (IfW Kiel).
    11. Lam, Joseph C. & Tang, H.L. & Li, Danny H.W., 2008. "Seasonal variations in residential and commercial sector electricity consumption in Hong Kong," Energy, Elsevier, vol. 33(3), pages 513-523.
    12. Alberini, Anna & Gans, Will & Velez-Lopez, Daniel, 2011. "Residential Consumption of Gas and Electricity in the U.S.: The Role of Prices and Income," Sustainable Development Papers 99637, Fondazione Eni Enrico Mattei (FEEM).
    13. Dergiades, Theologos & Tsoulfidis, Lefteris, 2008. "Estimating residential demand for electricity in the United States, 1965-2006," Energy Economics, Elsevier, vol. 30(5), pages 2722-2730, September.
    14. Bjart J. Holtsmark & Knut H. Alfsen, 2004. "PPP-correction of the IPCC emission scenarios - does it matter?," Discussion Papers 366, Statistics Norway, Research Department.
    15. Bigano, Andrea & Bosello, Francesco & Marano, Giuseppe, 2006. "Energy Demand and Temperature: A Dynamic Panel Analysis," International Energy Markets Working Papers 12117, Fondazione Eni Enrico Mattei (FEEM).
    16. Weibin Lin & Bin Chen & Shichao Luo & Li Liang, 2014. "Factor Analysis of Residential Energy Consumption at the Provincial Level in China," Sustainability, MDPI, vol. 6(11), pages 1-15, November.
    17. Fikru, Mahelet G. & Gautier, Luis, 2015. "The impact of weather variation on energy consumption in residential houses," Applied Energy, Elsevier, vol. 144(C), pages 19-30.
    18. World Bank, 2014. "World Development Indicators 2014," World Bank Publications - Books, The World Bank Group, number 18237, December.
    19. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198.
    20. Kialashaki, Arash & Reisel, John R., 2013. "Modeling of the energy demand of the residential sector in the United States using regression models and artificial neural networks," Applied Energy, Elsevier, vol. 108(C), pages 271-280.
    21. Thomas Wilbanks & Paul Leiby & Robert Perlack & J. Ensminger & Sherry Wright, 2007. "Toward an integrated analysis of mitigation and adaptation: some preliminary findings," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(5), pages 713-725, June.
    22. Bhattacharyya, Subhes C., 2015. "Influence of India’s transformation on residential energy demand," Applied Energy, Elsevier, vol. 143(C), pages 228-237.
    23. Shimoda, Yoshiyuki & Yamaguchi, Yukio & Okamura, Tomo & Taniguchi, Ayako & Yamaguchi, Yohei, 2010. "Prediction of greenhouse gas reduction potential in Japanese residential sector by residential energy end-use model," Applied Energy, Elsevier, vol. 87(6), pages 1944-1952, June.
    24. Fumo, Nelson & Rafe Biswas, M.A., 2015. "Regression analysis for prediction of residential energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 332-343.
    25. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935.
    26. Holtedahl, Pernille & Joutz, Frederick L., 2004. "Residential electricity demand in Taiwan," Energy Economics, Elsevier, vol. 26(2), pages 201-224, March.
    27. Guta, Dawit Diriba, 2012. "Application of an almost ideal demand system (AIDS) to Ethiopian rural residential energy use: Panel data evidence," Energy Policy, Elsevier, vol. 50(C), pages 528-539.
    28. Richard S. J. Tol & Sebastian Petrick & Katrin Rehdanz, 2012. "The Impact of Temperature Changes on Residential Energy Use," Working Paper Series 4412, Department of Economics, University of Sussex Business School.
    29. Christopher Kennedy & Lawrence Baker & Shobhakar Dhakal & Anu Ramaswami, 2012. "Sustainable Urban Systems," Journal of Industrial Ecology, Yale University, vol. 16(6), pages 775-779, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Jincai & Ji, Guangxing & Yue, YanLin & Lai, Zhizhu & Chen, Yulong & Yang, Dongyang & Yang, Xu & Wang, Zheng, 2019. "Spatio-temporal dynamics of urban residential CO2 emissions and their driving forces in China using the integrated two nighttime light datasets," Applied Energy, Elsevier, vol. 235(C), pages 612-624.
    2. Shen, Meng & Lu, Yujie & Wei, Kua Harn & Cui, Qingbin, 2020. "Prediction of household electricity consumption and effectiveness of concerted intervention strategies based on occupant behaviour and personality traits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    3. Emodi, Nnaemeka Vincent & Chaiechi, Taha & Alam Beg, A.B.M. Rabiul, 2019. "A techno-economic and environmental assessment of long-term energy policies and climate variability impact on the energy system," Energy Policy, Elsevier, vol. 128(C), pages 329-346.
    4. Mardones, Cristian, 2021. "Ex-post evaluation and cost-benefit analysis of a heater replacement program implemented in southern Chile," Energy, Elsevier, vol. 227(C).
    5. Shen Zhao & Yong Xu, 2021. "Exploring the Dynamic Spatio-Temporal Correlations between PM 2.5 Emissions from Different Sources and Urban Expansion in Beijing-Tianjin-Hebei Region," IJERPH, MDPI, vol. 18(2), pages 1-18, January.
    6. Qianwen Cheng & Manchun Li & Feixue Li & Haoqing Tang, 2019. "Response of Global Air Pollutant Emissions to Climate Change and Its Potential Effects on Human Life Expectancy Loss," Sustainability, MDPI, vol. 11(13), pages 1-17, July.
    7. Minda Ma & Ran Yan & Weiguang Cai, 2017. "An extended STIRPAT model-based methodology for evaluating the driving forces affecting carbon emissions in existing public building sector: evidence from China in 2000–2015," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(2), pages 741-756, November.
    8. Jun Yang & Yongmei Miao & Yunfan Li & Yiwen Li & Xiaoxue Ma & Shichun Xu & Shuxiao Wang, 2019. "Decomposition Analysis of Factors that Drive the Changes of Major Air Pollutant Emissions in China at a Multi-Regional Level," Sustainability, MDPI, vol. 11(24), pages 1-22, December.
    9. Minda Ma & Liyin Shen & Hong Ren & Weiguang Cai & Zhili Ma, 2017. "How to Measure Carbon Emission Reduction in China’s Public Building Sector: Retrospective Decomposition Analysis Based on STIRPAT Model in 2000–2015," Sustainability, MDPI, vol. 9(10), pages 1-16, September.
    10. Safarzadeh, Soroush & Rasti-Barzoki, Morteza, 2019. "A game theoretic approach for assessing residential energy-efficiency program considering rebound, consumer behavior, and government policies," Applied Energy, Elsevier, vol. 233, pages 44-61.
    11. Dan Xiong & Yiming Yan & Mengjiao Qin & Sensen Wu & Renyi Liu, 2023. "Quantitative Assessment of the Impact of Extreme Events on Electricity Consumption," Energies, MDPI, vol. 17(1), pages 1-18, December.
    12. Fuentes-Cortés, Luis Fabián & Flores-Tlacuahuac, Antonio & Ponce-Ortega, José María, 2019. "Integrated utility pricing and design of water-energy rural off-grid systems," Energy, Elsevier, vol. 177(C), pages 511-529.
    13. Shichun Xu & Yongmei Miao & Yiwen Li & Yifeng Zhou & Xiaoxue Ma & Zhengxia He & Bin Zhao & Shuxiao Wang, 2019. "What Factors Drive Air Pollutants in China? An Analysis from the Perspective of Regional Difference Using a Combined Method of Production Decomposition Analysis and Logarithmic Mean Divisia Index," Sustainability, MDPI, vol. 11(17), pages 1-19, August.
    14. Chen, Yilin & Shen, Huizhong & Zhong, Qirui & Chen, Han & Huang, Tianbo & Liu, Junfeng & Cheng, Hefa & Zeng, Eddy Y. & Smith, Kirk R. & Tao, Shu, 2016. "Transition of household cookfuels in China from 2010 to 2012," Applied Energy, Elsevier, vol. 184(C), pages 800-809.
    15. Peng, Liqun & Zhang, Qiang & Yao, Zhiliang & Mauzerall, Denise L. & Kang, Sicong & Du, Zhenyu & Zheng, Yixuan & Xue, Tao & He, Kebin, 2019. "Underreported coal in statistics: A survey-based solid fuel consumption and emission inventory for the rural residential sector in China," Applied Energy, Elsevier, vol. 235(C), pages 1169-1182.
    16. Nnaemeka Vincent Emodi & Taha Chaiechi & ABM Rabiul Alam Beg, 2018. "The impact of climate change on electricity demand in Australia," Energy & Environment, , vol. 29(7), pages 1263-1297, November.
    17. Lawal, Abiola S. & Servadio, Joseph L. & Davis, Tate & Ramaswami, Anu & Botchwey, Nisha & Russell, Armistead G., 2021. "Orthogonalization and machine learning methods for residential energy estimation with social and economic indicators," Applied Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pablo-Romero, María del P. & Sánchez-Braza, Antonio, 2015. "Productive energy use and economic growth: Energy, physical and human capital relationships," Energy Economics, Elsevier, vol. 49(C), pages 420-429.
    2. Desiderio Romero-Jordán & Pablo del Río & Cristina Peñasco, 2014. "Household electricity demand in Spanish regions. Public policy implications," Working Papers 2014/24, Institut d'Economia de Barcelona (IEB).
    3. Desiderio Romero-Jordán & Pablo del Río & Cristina Peñasco, 2014. "Household electricity demand in Spanish regions. Public policy implications," Working Papers 2014/24, Institut d'Economia de Barcelona (IEB).
    4. John Curtis & Brian Stanley, 2016. "Analysing Residential Energy Demand: An Error Correction Demand System Approach for Ireland," The Economic and Social Review, Economic and Social Studies, vol. 47(2), pages 185-211.
    5. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    6. Kiran B Krishnamurthy, Chandra & Kriström, Bengt, 2013. "A cross-country analysis of residential electricity demand in 11 OECD-countries," CERE Working Papers 2013:5, CERE - the Center for Environmental and Resource Economics, revised 30 Jun 2014.
    7. Weibin Lin & Bin Chen & Shichao Luo & Li Liang, 2014. "Factor Analysis of Residential Energy Consumption at the Provincial Level in China," Sustainability, MDPI, vol. 6(11), pages 1-15, November.
    8. Maryse Labriet & Santosh Joshi & Marc Vielle & Philip Holden & Neil Edwards & Amit Kanudia & Richard Loulou & Frédéric Babonneau, 2015. "Worldwide impacts of climate change on energy for heating and cooling," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(7), pages 1111-1136, October.
    9. Hung, Ming-Feng & Chie, Bin-Tzong, 2017. "The long-run performance of increasing-block pricing in Taiwan's residential electricity sector," Energy Policy, Elsevier, vol. 109(C), pages 782-793.
    10. Salari, Mahmoud & Javid, Roxana J., 2017. "Modeling household energy expenditure in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 822-832.
    11. Pellini, Elisabetta, 2021. "Estimating income and price elasticities of residential electricity demand with Autometrics," Energy Economics, Elsevier, vol. 101(C).
    12. Csereklyei, Zsuzsanna, 2020. "Price and income elasticities of residential and industrial electricity demand in the European Union," Energy Policy, Elsevier, vol. 137(C).
    13. Silvana Mima & Patrick Criqui, 2015. "The Costs of Climate Change for the European Energy System, an Assessment with the POLES Model," Post-Print hal-01149610, HAL.
    14. Boonsaeng, Tullaya & Carpio, Carlos E., 2017. "Budget Allocation Patterns of American Household across Income Level in the 21 Century," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258245, Agricultural and Applied Economics Association.
    15. Favero, Filippo & Grossi, Luigi, 2023. "Analysis of individual natural gas consumption and price elasticity: Evidence from billing data in Italy," Energy Economics, Elsevier, vol. 118(C).
    16. Mark Miller & Anna Alberini, 2015. "Sensitivity of price elasticity of demand to aggregation, unobserved heterogeneity, price trends, and price endogeneity: Evidence from U.S. Data," CER-ETH Economics working paper series 15/223, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    17. Chen, Kunlong & Jiang, Jiuchun & Zheng, Fangdan & Chen, Kunjin, 2018. "A novel data-driven approach for residential electricity consumption prediction based on ensemble learning," Energy, Elsevier, vol. 150(C), pages 49-60.
    18. Miller, Mark & Alberini, Anna, 2016. "Sensitivity of price elasticity of demand to aggregation, unobserved heterogeneity, price trends, and price endogeneity: Evidence from U.S. Data," Energy Policy, Elsevier, vol. 97(C), pages 235-249.
    19. Altvater, Susanne & de Block, Debora & Bouwma, Irene & Dworak, Thomas & Frelih-Larsen, Ana & Görlach, Benjamin & Hermeling, Claudia & Klostermann, Judith & König, Martin & Leitner, Markus & Marinova, , 2012. "Adaptation measures in the EU: Policies, costs, and economic assessment. "Climate Proofing" of key EU policies," ZEW Expertises, ZEW - Leibniz Centre for European Economic Research, number 110558.
    20. Jing Cao, Mun S. Ho, and Huifang Liang, 2016. "Household energy demand in Urban China: Accounting for regional prices and rapid income change," The Energy Journal, International Association for Energy Economics, vol. 0(China Spe).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:184:y:2016:i:c:p:820-829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.