IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i9p4055-d1646798.html
   My bibliography  Save this article

Research on the Coordinated Development Path of Rural Energy Supply and Demand Under the Context of Rural Revitalization Based on the Asia-Pacific Integrated Model

Author

Listed:
  • Minwei Liu

    (Planning & Research Center for Power Grid, Yunnan Power Grid Corp., Kunming 650011, China)

  • Ziyi Xiao

    (Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China)

  • Xiaoyu Liu

    (Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China)

  • Jincan Zeng

    (Energy Development Research Institute, China Southern Power Grid, Guangzhou 510663, China)

  • Qin Wang

    (Energy Development Research Institute, China Southern Power Grid, Guangzhou 510663, China)

  • Rongfeng Deng

    (Energy Development Research Institute, China Southern Power Grid, Guangzhou 510663, China)

  • Xi Liu

    (Energy Development Research Institute, China Southern Power Grid, Guangzhou 510663, China)

  • Guori Huang

    (Energy Development Research Institute, China Southern Power Grid, Guangzhou 510663, China)

  • Yuanzhe Zhu

    (Energy Development Research Institute, China Southern Power Grid, Guangzhou 510663, China)

  • Binghao He

    (Energy Development Research Institute, China Southern Power Grid, Guangzhou 510663, China)

  • Peng Wang

    (Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China)

Abstract

The rural revitalization strategy serves as a powerful engine, driving the coordinated development of urban and rural areas while propelling the modernization and increasing the quality of China’s construction. Based on the Asia-Pacific Integrated Model (AIM/Enduse model), this study constructed a Rural Areas in Guangdong model (RG-Enduse model) applicable to rural areas in Guangdong Province, China. The model includes 18 types of terminal technological equipment which are subdivided into 5 types of service needs for rural residents on the demand side. Through a supply-side analysis, this study explores the coordinated development paths of energy supply and demand in rural areas under the rural revitalization strategy across three distinct scenarios. The results show that energy consumption in the baseline (BL) scenario and the low-carbon (CM1) scenario will both peak in 2025 at 17.46 million tce and 14.35 million tce, respectively, and also show a continuous downward trend in the green low-carbon (CM2) scenario, falling to 9.77 million tce by 2060. Electricity will be the dominant energy resource in the carbon neutral path to 2060, with CM2 and CM2, accounting for 78.78% and 80.61% of green electricity consumption, respectively. In addition, the utilization of carbon capture, utilization, and storage (CCUS) for thermal power will be indispensable to ensure the stability of the green power supply.

Suggested Citation

  • Minwei Liu & Ziyi Xiao & Xiaoyu Liu & Jincan Zeng & Qin Wang & Rongfeng Deng & Xi Liu & Guori Huang & Yuanzhe Zhu & Binghao He & Peng Wang, 2025. "Research on the Coordinated Development Path of Rural Energy Supply and Demand Under the Context of Rural Revitalization Based on the Asia-Pacific Integrated Model," Sustainability, MDPI, vol. 17(9), pages 1-28, April.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:9:p:4055-:d:1646798
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/9/4055/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/9/4055/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wen, Zongguo & Chen, Min & Meng, Fanxin, 2015. "Evaluation of energy saving potential in China's cement industry using the Asian-Pacific Integrated Model and the technology promotion policy analysis," Energy Policy, Elsevier, vol. 77(C), pages 227-237.
    2. Mi Zhou & Hongxun Liu & Liqun Peng & Yue Qin & Dan Chen & Lin Zhang & Denise L. Mauzerall, 2022. "Environmental benefits and household costs of clean heating options in northern China," Nature Sustainability, Nature, vol. 5(4), pages 329-338, April.
    3. Liu, Wenling & Wang, Can & Mol, Arthur P.J., 2012. "Rural residential CO2 emissions in China: Where is the major mitigation potential?," Energy Policy, Elsevier, vol. 51(C), pages 223-232.
    4. Zhang, L.X. & Wang, C.B. & Bahaj, A.S., 2014. "Carbon emissions by rural energy in China," Renewable Energy, Elsevier, vol. 66(C), pages 641-649.
    5. Zheng, Xinye & Wei, Chu & Qin, Ping & Guo, Jin & Yu, Yihua & Song, Feng & Chen, Zhanming, 2014. "Characteristics of residential energy consumption in China: Findings from a household survey," Energy Policy, Elsevier, vol. 75(C), pages 126-135.
    6. Li, Canbing & He, Lina & Cao, Yijia & Xiao, Guoxuan & Zhang, Wei & Liu, Xiaohai & Yu, Zhicheng & Tan, Yi & Zhou, Jinju, 2014. "Carbon emission reduction potential of rural energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 254-262.
    7. Chen, Yilin & Shen, Huizhong & Zhong, Qirui & Chen, Han & Huang, Tianbo & Liu, Junfeng & Cheng, Hefa & Zeng, Eddy Y. & Smith, Kirk R. & Tao, Shu, 2016. "Transition of household cookfuels in China from 2010 to 2012," Applied Energy, Elsevier, vol. 184(C), pages 800-809.
    8. Wang, Na & Fu, Xiaodong & Wang, Shaobin, 2022. "Spatial-temporal variation and coupling analysis of residential energy consumption and economic growth in China," Applied Energy, Elsevier, vol. 309(C).
    9. Teng Ma & Silu Zhang & Yilong Xiao & Xiaorui Liu & Minghao Wang & Kai Wu & Guofeng Shen & Chen Huang & Yan Ru Fang & Yang Xie, 2023. "Costs and health benefits of the rural energy transition to carbon neutrality in China," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Yao, Chunsheng & Chen, Chongying & Li, Ming, 2012. "Analysis of rural residential energy consumption and corresponding carbon emissions in China," Energy Policy, Elsevier, vol. 41(C), pages 445-450.
    11. Chen, Han & Huang, Ye & Shen, Huizhong & Chen, Yilin & Ru, Muye & Chen, Yuanchen & Lin, Nan & Su, Shu & Zhuo, Shaojie & Zhong, Qirui & Wang, Xilong & Liu, Junfeng & Li, Bengang & Tao, Shu, 2016. "Modeling temporal variations in global residential energy consumption and pollutant emissions," Applied Energy, Elsevier, vol. 184(C), pages 820-829.
    12. Zhang, Ming & Su, Bin, 2016. "Assessing China's rural household energy sustainable development using improved grouped principal component method," Energy, Elsevier, vol. 113(C), pages 509-514.
    13. Zhang, Lixiao & Yang, Zhifeng & Chen, Bin & Chen, Guoqian, 2009. "Rural energy in China: Pattern and policy," Renewable Energy, Elsevier, vol. 34(12), pages 2813-2823.
    14. Daioglou, Vassilis & van Ruijven, Bas J. & van Vuuren, Detlef P., 2012. "Model projections for household energy use in developing countries," Energy, Elsevier, vol. 37(1), pages 601-615.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min He & Pei Liu & Linwei Ma & Chinhao Chong & Xu Li & Shizhong Song & Zheng Li & Weidou Ni, 2018. "A Systems Analysis of the Development Status and Trends of Rural Household Energy in China," Energies, MDPI, vol. 11(7), pages 1-23, July.
    2. Li, Jianglong & Chen, Chang & Liu, Hongxun, 2019. "Transition from non-commercial to commercial energy in rural China: Insights from the accessibility and affordability," Energy Policy, Elsevier, vol. 127(C), pages 392-403.
    3. Jiang, Zhixiang & Dai, Yanhui & Luo, Xianxiang & Liu, Guocheng & Wang, Hefang & Zheng, Hao & Wang, Zhenyu, 2017. "Assessment of bioenergy development potential and its environmental impact for rural household energy consumption: A case study in Shandong, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1153-1161.
    4. Lu Jiang & Xingpeng Chen & Bing Xue, 2019. "Features, Driving Forces and Transition of the Household Energy Consumption in China: A Review," Sustainability, MDPI, vol. 11(4), pages 1-20, February.
    5. Niu, Shuwen & Li, Zhen & Qiu, Xin & Dai, Runqi & Wang, Xiang & Qiang, Wenli & Hong, Zhenguo, 2019. "Measurement of effective energy consumption in China's rural household sector and policy implication," Energy Policy, Elsevier, vol. 128(C), pages 553-564.
    6. Jingwen Wu & Bingdong Hou & Ruoyu Ke & Yun-Fei Du & Ce Wang & Xiangzheng Li & Jiawei Cai & Tianqi Chen & Meixuan Teng & Jin Liu & Jin-Wei Wang & Hua Liao, 2018. "Residential fuel choice in the rural: A field research on two counties of North China," CEEP-BIT Working Papers 109, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    7. Jingwen Wu & Bingdong Hou & Ruo-Yu Ke & Yun-Fei Du & Ce Wang & Xiangzheng Li & Jiawei Cai & Tianqi Chen & Meixuan Teng & Jin Liu & Jin-Wei Wang & Hua Liao, 2017. "Residential Fuel Choice in Rural Areas: Field Research of Two Counties of North China," Sustainability, MDPI, vol. 9(4), pages 1-16, April.
    8. Wenheng Wu & Hongying Zhu & Yinghao Qu & Kaiying Xu, 2017. "Regional Disparities in Emissions of Rural Household Energy Consumption: A Case Study of Northwest China," Sustainability, MDPI, vol. 9(5), pages 1-17, May.
    9. Peng, Liqun & Zhang, Qiang & Yao, Zhiliang & Mauzerall, Denise L. & Kang, Sicong & Du, Zhenyu & Zheng, Yixuan & Xue, Tao & He, Kebin, 2019. "Underreported coal in statistics: A survey-based solid fuel consumption and emission inventory for the rural residential sector in China," Applied Energy, Elsevier, vol. 235(C), pages 1169-1182.
    10. Ma, Shaoyue & Man, Hecheng & Li, Xiao & Xu, Xiangbo & Sun, Mingxing & Xie, Minghui & Zhang, Linxiu, 2023. "How nonfarm employment drives the households’ energy transition: Evidence from rural China," Energy, Elsevier, vol. 267(C).
    11. Liang Meng & Ahmed Alengebawy & Ping Ai & Keda Jin & Mengdi Chen & Yulong Pan, 2020. "Techno-Economic Assessment of Three Modes of Large-Scale Crop Residue Utilization Projects in China," Energies, MDPI, vol. 13(14), pages 1-19, July.
    12. Chen, Lei & Xu, Linyu & Velasco-Fernández, Raúl & Giampietro, Mario & Yang, Zhifeng, 2021. "Residential energy metabolic patterns in China: A study of the urbanization process," Energy, Elsevier, vol. 215(PA).
    13. Zhang, XiaoHong & Pan, HengYu & Cao, Jun & Li, JinRong, 2015. "Energy consumption of China’s crop production system and the related emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 111-125.
    14. Fang, Yiping & Wei, Yanqiang, 2013. "Climate change adaptation on the Qinghai–Tibetan Plateau: The importance of solar energy utilization for rural household," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 508-518.
    15. Muhammad Imran & Azlan Zahid & Salma Mouneer & Orhan Özçatalbaş & Shamsheer Ul Haq & Pomi Shahbaz & Muhammad Muzammil & Muhammad Ramiz Murtaza, 2022. "Relationship between Household Dynamics, Biomass Consumption, and Carbon Emissions in Pakistan," Sustainability, MDPI, vol. 14(11), pages 1-16, May.
    16. Lei Zhao & Yongqi Zhang & Haixia Zhang, 2022. "Research on the Impact of Digital Literacy on Farmer Households’ Green Cooking Energy Consumption: Evidence from Rural China," IJERPH, MDPI, vol. 19(20), pages 1-16, October.
    17. Chen Zhang & Hua Liao & Zhifu Mi, 2019. "Climate impacts: temperature and electricity consumption," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1259-1275, December.
    18. Yongxia Ding & Wei Qu & Shuwen Niu & Man Liang & Wenli Qiang & Zhenguo Hong, 2016. "Factors Influencing the Spatial Difference in Household Energy Consumption in China," Sustainability, MDPI, vol. 8(12), pages 1-20, December.
    19. Qi, Wei & Li, Guangdong, 2020. "Residential carbon emission embedded in China's inter-provincial population migration," Energy Policy, Elsevier, vol. 136(C).
    20. Zhou, Lingfang & He, Weijun & Kong, Yang & Zhang, Zhiqiu, 2025. "Climate change cognition and biodiversity conservation awareness facilitate household clean energy consumption: Evidence from a biodiversity hotspot," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:9:p:4055-:d:1646798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.