IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v215y2021ipas0360544220321289.html
   My bibliography  Save this article

Residential energy metabolic patterns in China: A study of the urbanization process

Author

Listed:
  • Chen, Lei
  • Xu, Linyu
  • Velasco-Fernández, Raúl
  • Giampietro, Mario
  • Yang, Zhifeng

Abstract

With the expansion of the acceleration of the urbanization process, China experienced a corresponding high demand for energy, which led to significant changes in energy metabolic patterns. The application of the MultiScale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM) approach facilitates the study of the factors that determined the impressive transformation of China’s residential energy metabolism since 2000. The findings revealed that the year 2009 was a turning point, when the household hours of urban areas exceeded those of rural regions. Before 2009, the residential energy metabolic rate remained relatively stable, the domination of biofuels delayed the increase in the energy metabolic rate (EMR). With the rise in the rapid growth of non-basic living energy demand, the EMR of households has rapidly increased after 2009. A complete decomposition analysis of the EMRs showed that the increase in residential metabolism was dragged down by the urbanization effect from rural households. Moreover, in respect to the energy carriers, the urbanization effect accounted for less than 10% of the total changes in the fuel and electricity EMR, which indicates that energy performance, in regard to the lifestyles in both urban and rural households, will bring about new challenges to China’s energy-saving and energy structure refining policies.

Suggested Citation

  • Chen, Lei & Xu, Linyu & Velasco-Fernández, Raúl & Giampietro, Mario & Yang, Zhifeng, 2021. "Residential energy metabolic patterns in China: A study of the urbanization process," Energy, Elsevier, vol. 215(PA).
  • Handle: RePEc:eee:energy:v:215:y:2021:i:pa:s0360544220321289
    DOI: 10.1016/j.energy.2020.119021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220321289
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Velasco-Fernández, Raúl & Giampietro, Mario & Bukkens, Sandra G.F., 2018. "Analyzing the energy performance of manufacturing across levels using the end-use matrix," Energy, Elsevier, vol. 161(C), pages 559-572.
    2. Lv, Yulan & Chen, Wei & Cheng, Jianquan, 2020. "Effects of urbanization on energy efficiency in China: New evidence from short run and long run efficiency models," Energy Policy, Elsevier, vol. 147(C).
    3. Giampietro, Mario & Mayumi, Kozo & Ramos-Martin, Jesus, 2009. "Multi-scale integrated analysis of societal and ecosystem metabolism (MuSIASEM): Theoretical concepts and basic rationale," Energy, Elsevier, vol. 34(3), pages 313-322.
    4. Geng, Yong & Liu, Ye & Liu, Dan & Zhao, Hengxin & Xue, Bing, 2011. "Regional societal and ecosystem metabolism analysis in China: A multi-scale integrated analysis of societal metabolism(MSIASM) approach," Energy, Elsevier, vol. 36(8), pages 4799-4808.
    5. Xia, Linlin & Zhang, Yan & Sun, Xiaoxi & Li, Jinjian, 2017. "Analyzing the spatial pattern of carbon metabolism and its response to change of urban form," Ecological Modelling, Elsevier, vol. 355(C), pages 105-115.
    6. Chinhao Chong & Weidou Ni & Linwei Ma & Pei Liu & Zheng Li, 2015. "The Use of Energy in Malaysia: Tracing Energy Flows from Primary Source to End Use," Energies, MDPI, vol. 8(4), pages 1-39, April.
    7. Wang, Qiang & Lin, Jian & Zhou, Kan & Fan, Jie & Kwan, Mei-Po, 2020. "Does urbanization lead to less residential energy consumption? A comparative study of 136 countries," Energy, Elsevier, vol. 202(C).
    8. Li, Jianglong & Chen, Chang & Liu, Hongxun, 2019. "Transition from non-commercial to commercial energy in rural China: Insights from the accessibility and affordability," Energy Policy, Elsevier, vol. 127(C), pages 392-403.
    9. Monica Di Donato & Pedro L. Lomas & Óscar Carpintero, 2015. "Metabolism and Environmental Impacts of Household Consumption: A Review on the Assessment, Methodology, and Drivers," Journal of Industrial Ecology, Yale University, vol. 19(5), pages 904-916, October.
    10. Lv, Yulan & Chen, Wei & Cheng, Jianquan, 2019. "Modelling dynamic impacts of urbanization on disaggregated energy consumption in China: A spatial Durbin modelling and decomposition approach," Energy Policy, Elsevier, vol. 133(C).
    11. Yu, Binbin, 2021. "Ecological effects of new-type urbanization in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Gerber, Julien-François & Scheidel, Arnim, 2018. "In Search of Substantive Economics: Comparing Today's Two Major Socio-metabolic Approaches to the Economy – MEFA and MuSIASEM," Ecological Economics, Elsevier, vol. 144(C), pages 186-194.
    13. Machado, Giovani & Schaeffer, Roberto & Worrell, Ernst, 2001. "Energy and carbon embodied in the international trade of Brazil: an input-output approach," Ecological Economics, Elsevier, vol. 39(3), pages 409-424, December.
    14. Wang, Jieyu & Wang, Shaojian & Li, Shijie & Feng, Kuishuang, 2019. "Coupling analysis of urbanization and energy-environment efficiency: Evidence from Guangdong province," Applied Energy, Elsevier, vol. 254(C).
    15. Christopher Kennedy & Daniel Hoornweg, 2012. "Mainstreaming Urban Metabolism," Journal of Industrial Ecology, Yale University, vol. 16(6), pages 780-782, December.
    16. Han, Wenyi & Geng, Yong & Lu, Yangsiyu & Wilson, Jeffrey & Sun, Lu & Satoshi, Onishi & Geldron, Alain & Qian, Yiying, 2018. "Urban metabolism of megacities: A comparative analysis of Shanghai, Tokyo, London and Paris to inform low carbon and sustainable development pathways," Energy, Elsevier, vol. 155(C), pages 887-898.
    17. Li, Canbing & He, Lina & Cao, Yijia & Xiao, Guoxuan & Zhang, Wei & Liu, Xiaohai & Yu, Zhicheng & Tan, Yi & Zhou, Jinju, 2014. "Carbon emission reduction potential of rural energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 254-262.
    18. Wu, Haitao & Hao, Yu & Weng, Jia-Hsi, 2019. "How does energy consumption affect China's urbanization? New evidence from dynamic threshold panel models," Energy Policy, Elsevier, vol. 127(C), pages 24-38.
    19. Wang, Qiang, 2014. "Effects of urbanisation on energy consumption in China," Energy Policy, Elsevier, vol. 65(C), pages 332-339.
    20. Khan, Zarrar & Linares, Pedro & García-González, Javier, 2017. "Integrating water and energy models for policy driven applications. A review of contemporary work and recommendations for future developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1123-1138.
    21. Shahbaz, Muhammad & Loganathan, Nanthakumar & Sbia, Rashid & Afza, Talat, 2015. "The effect of urbanization, affluence and trade openness on energy consumption: A time series analysis in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 683-693.
    22. Zhang, Yan & Yang, Zhifeng & Liu, Gengyuan & Yu, Xiangyi, 2011. "Emergy analysis of the urban metabolism of Beijing," Ecological Modelling, Elsevier, vol. 222(14), pages 2377-2384.
    23. Fan, Jing-Li & Liao, Hua & Liang, Qiao-Mei & Tatano, Hirokazu & Liu, Chun-Feng & Wei, Yi-Ming, 2013. "Residential carbon emission evolutions in urban–rural divided China: An end-use and behavior analysis," Applied Energy, Elsevier, vol. 101(C), pages 323-332.
    24. Biying Yu & Yi-Ming Wei & Kei Gomi & Yuzuru Matsuoka, 2018. "Future scenarios for energy consumption and carbon emissions due to demographic transitions in Chinese households," Nature Energy, Nature, vol. 3(2), pages 109-118, February.
    25. Zhang, Lixiao & Yang, Zhifeng & Chen, Bin & Chen, Guoqian, 2009. "Rural energy in China: Pattern and policy," Renewable Energy, Elsevier, vol. 34(12), pages 2813-2823.
    26. Al-mulali, Usama & Fereidouni, Hassan Gholipour & Lee, Janice Y.M. & Sab, Che Normee Binti Che, 2013. "Exploring the relationship between urbanization, energy consumption, and CO2 emission in MENA countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 107-112.
    27. Pérez-Sánchez, Laura & Giampietro, Mario & Velasco-Fernández, Raúl & Ripa, Maddalena, 2019. "Characterizing the metabolic pattern of urban systems using MuSIASEM: The case of Barcelona," Energy Policy, Elsevier, vol. 124(C), pages 13-22.
    28. Dioha, Michael O. & Kumar, Atul, 2020. "Exploring sustainable energy transitions in sub-Saharan Africa residential sector: The case of Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    29. Nathalia Tejedor-Flores & Purificación Vicente-Galindo & Purificación Galindo-Villardón, 2017. "Sustainability Multivariate Analysis of the Energy Consumption of Ecuador Using MuSIASEM and BIPLOT Approach," Sustainability, MDPI, vol. 9(6), pages 1-15, June.
    30. S. Tao & M. Y. Ru & W. Du & X. Zhu & Q. R. Zhong & B. G. Li & G. F. Shen & X. L. Pan & W. J. Meng & Y. L. Chen & H. Z. Shen & N. Lin & S. Su & S. J. Zhuo & T. B. Huang & Y. Xu & X. Yun & J. F. Liu & X, 2018. "Quantifying the rural residential energy transition in China from 1992 to 2012 through a representative national survey," Nature Energy, Nature, vol. 3(7), pages 567-573, July.
    31. Zhang, L.X. & Wang, C.B. & Bahaj, A.S., 2014. "Carbon emissions by rural energy in China," Renewable Energy, Elsevier, vol. 66(C), pages 641-649.
    32. Xiaoyue Wang & Shuyao Wu & Shuangcheng Li, 2017. "Urban Metabolism of Three Cities in Jing-Jin-Ji Urban Agglomeration, China: Using the MuSIASEM Approach," Sustainability, MDPI, vol. 9(8), pages 1-21, August.
    33. Liu, Yaobin, 2009. "Exploring the relationship between urbanization and energy consumption in China using ARDL (autoregressive distributed lag) and FDM (factor decomposition model)," Energy, Elsevier, vol. 34(11), pages 1846-1854.
    34. Sun, J. W., 1998. "Changes in energy consumption and energy intensity: A complete decomposition model," Energy Economics, Elsevier, vol. 20(1), pages 85-100, February.
    35. Velasco-Fernández, Raúl & Ramos-Martín, Jesus & Giampietro, Mario, 2015. "The energy metabolism of China and India between 1971 and 2010: Studying the bifurcation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1052-1066.
    36. Han, Hongyun & Wu, Shu, 2018. "Rural residential energy transition and energy consumption intensity in China," Energy Economics, Elsevier, vol. 74(C), pages 523-534.
    37. Zhu, Xueting & Mu, Xianzhong & Hu, Guangwen, 2019. "Ecological network analysis of urban energy metabolic system—A case study of Beijing," Ecological Modelling, Elsevier, vol. 404(C), pages 36-45.
    38. Chen, Lei & Xu, Linyu & Yang, Zhifeng, 2019. "Inequality of industrial carbon emissions of the urban agglomeration and its peripheral cities: A case in the Pearl River Delta, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 438-447.
    39. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    40. Chen, Guangwu & Zhu, Yuhan & Wiedmann, Thomas & Yao, Lina & Xu, Lixiao & Wang, Yafei, 2019. "Urban-rural disparities of household energy requirements and influence factors in China: Classification tree models," Applied Energy, Elsevier, vol. 250(C), pages 1321-1335.
    41. Xu, Xinkuo & Han, Liyan & Lv, Xiaofeng, 2016. "Household carbon inequality in urban China, its sources and determinants," Ecological Economics, Elsevier, vol. 128(C), pages 77-86.
    42. Raul F. C. Miranda & Carolina Grottera & Mario Giampietro, 2016. "Understanding slums: analysis of the metabolic pattern of the Vidigal favela in Rio de Janeiro, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 18(5), pages 1297-1322, October.
    43. Ramos-Martín, Jesús & Cañellas-Boltà, Sílvia & Giampietro, Mario & Gamboa, Gonzalo, 2009. "Catalonia's energy metabolism: Using the MuSIASEM approach at different scales," Energy Policy, Elsevier, vol. 37(11), pages 4658-4671, November.
    44. Ramos-Martin, Jesus & Giampietro, Mario & Mayumi, Kozo, 2007. "On China's exosomatic energy metabolism: An application of multi-scale integrated analysis of societal metabolism (MSIASM)," Ecological Economics, Elsevier, vol. 63(1), pages 174-191, June.
    45. van Ruijven, Bas J. & van Vuuren, Detlef P. & de Vries, Bert J.M. & Isaac, Morna & van der Sluijs, Jeroen P. & Lucas, Paul L. & Balachandra, P., 2011. "Model projections for household energy use in India," Energy Policy, Elsevier, vol. 39(12), pages 7747-7761.
    46. Bahers, Jean-Baptiste & Tanguy, Audrey & Pincetl, Stephanie, 2020. "Metabolic relationships between cities and hinterland: a political-industrial ecology of energy metabolism of Saint-Nazaire metropolitan and port area (France)," Ecological Economics, Elsevier, vol. 167(C).
    47. Poumanyvong, Phetkeo & Kaneko, Shinji, 2010. "Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis," Ecological Economics, Elsevier, vol. 70(2), pages 434-444, December.
    48. Sabine Barles, 2009. "Urban Metabolism of Paris and Its Region," Journal of Industrial Ecology, Yale University, vol. 13(6), pages 898-913, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreoni, Valeria, 2020. "The energy metabolism of countries: Energy efficiency and use in the period that followed the global financial crisis," Energy Policy, Elsevier, vol. 139(C).
    2. Xiaoyue Wang & Shuyao Wu & Shuangcheng Li, 2017. "Urban Metabolism of Three Cities in Jing-Jin-Ji Urban Agglomeration, China: Using the MuSIASEM Approach," Sustainability, MDPI, vol. 9(8), pages 1-21, August.
    3. Yu, Yantuan & Zhang, Ning & Kim, Jong Dae, 2020. "Impact of urbanization on energy demand: An empirical study of the Yangtze River Economic Belt in China," Energy Policy, Elsevier, vol. 139(C).
    4. Lv, Yulan & Chen, Wei & Cheng, Jianquan, 2019. "Modelling dynamic impacts of urbanization on disaggregated energy consumption in China: A spatial Durbin modelling and decomposition approach," Energy Policy, Elsevier, vol. 133(C).
    5. Setareh Katircioglu, 2022. "Estimating the role of urban development in environment quality: Evidence from G7 countries," Energy & Environment, , vol. 33(2), pages 283-314, March.
    6. Pengfei Sheng & Yaping He & Xiaohui Guo, 2017. "The impact of urbanization on energy consumption and efficiency," Energy & Environment, , vol. 28(7), pages 673-686, November.
    7. Ripa, M. & Di Felice, L.J. & Giampietro, M., 2021. "The energy metabolism of post-industrial economies. A framework to account for externalization across scales," Energy, Elsevier, vol. 214(C).
    8. Wu, Shu & Han, Hongyun, 2022. "Energy transition, intensity growth, and policy evolution: Evidence from rural China," Energy Economics, Elsevier, vol. 105(C).
    9. Shao, Jun & Wang, Lianghu, 2023. "Can new-type urbanization improve the green total factor energy efficiency? Evidence from China," Energy, Elsevier, vol. 262(PB).
    10. Yongxia Ding & Wei Qu & Shuwen Niu & Man Liang & Wenli Qiang & Zhenguo Hong, 2016. "Factors Influencing the Spatial Difference in Household Energy Consumption in China," Sustainability, MDPI, vol. 8(12), pages 1-20, December.
    11. Cheng, Zhonghua & Wang, Lan, 2023. "Can new urbanization improve urban total-factor energy efficiency in China?," Energy, Elsevier, vol. 266(C).
    12. Fan, Jing-Li & Zhang, Yue-Jun & Wang, Bing, 2017. "The impact of urbanization on residential energy consumption in China: An aggregated and disaggregated analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 220-233.
    13. Chen, Jiandong & Cheng, Shulei & Song, Malin, 2017. "Decomposing inequality in energy-related CO2 emissions by source and source increment: The roles of production and residential consumption," Energy Policy, Elsevier, vol. 107(C), pages 698-710.
    14. Li, Ke & Lin, Boqiang, 2015. "Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1107-1122.
    15. Ginard-Bosch, Francisco Javier & Ramos-Martín, Jesús, 2016. "Energy metabolism of the Balearic Islands (1986–2012)," Ecological Economics, Elsevier, vol. 124(C), pages 25-35.
    16. Cheng Chen & Yajie Gao & Yidong Qin, 2023. "A Causal Relationship between the New-Type Urbanization and Energy Consumption in China: A Panel VAR Approach," Sustainability, MDPI, vol. 15(14), pages 1-18, July.
    17. Cai, Zhengyu & Yu, Chin-Hsien & Zhu, Chunhui, 2021. "Government-led urbanization and natural gas demand in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    18. Wang, Shaojian & Zeng, Jingyuan & Huang, Yongyuan & Shi, Chenyi & Zhan, Peiyu, 2018. "The effects of urbanization on CO2 emissions in the Pearl River Delta: A comprehensive assessment and panel data analysis," Applied Energy, Elsevier, vol. 228(C), pages 1693-1706.
    19. Lv, Yulan & Chen, Wei & Cheng, Jianquan, 2020. "Effects of urbanization on energy efficiency in China: New evidence from short run and long run efficiency models," Energy Policy, Elsevier, vol. 147(C).
    20. Wang, Qiang & Wu, Shi-dai & Zeng, Yue-e & Wu, Bo-wei, 2016. "Exploring the relationship between urbanization, energy consumption, and CO2 emissions in different provinces of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1563-1579.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:215:y:2021:i:pa:s0360544220321289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.