IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i8p1481-d109131.html
   My bibliography  Save this article

Urban Metabolism of Three Cities in Jing-Jin-Ji Urban Agglomeration, China: Using the MuSIASEM Approach

Author

Listed:
  • Xiaoyue Wang

    (The Key Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China)

  • Shuyao Wu

    (The Key Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China)

  • Shuangcheng Li

    (The Key Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China)

Abstract

Urban problems—such as resources depletion, environment pollution and waste generation—usually occur during rapid urbanisation processes, especially in mega-urban agglomerations. Finding solutions to sustainable urban development is a global research interest, and urban metabolism is an effective approach to analysing the socio-economic system and ecosystem. In this study, three cities in the Jing-Jin-Ji urban agglomeration in China—Beijing, Tianjin and Tangshan—were selected as study cases. Multiscale integrated analysis of the societal and ecosystem metabolism (MuSIASEM) method and complete decomposition model were applied to reveal the metabolic characteristics and evolutionary trajectories of the three cities from multiple levels and dimensions. Results showed that the metabolic patterns of Beijing, Tianjin and Tangshan were service-dominated, technology and capital aggregation-dominated and traditional industry-dominated, respectively. The evolution of economic efficiency, ecological pressure and social welfare in the three cities were different because of the stage of urban development where they were located. Tianjin and Tangshan showed positive correlations between economic growth and energy consumption, whereas Beijing demonstrated a more neutral correlation. In the future, issues—such as overpopulation, labour shortage and low efficiency of energy and labour—are likely to be the key factors that impede sustainable development in the three cities, respectively. Several policy implications were raised, including the combination of population dispersal and competitive industry relocation policies for Beijing, attracting young labour in the short term and transforming the economic growth patterns in the long term for Tianjin, and industrial upgrades and technical innovation for Tangshan.

Suggested Citation

  • Xiaoyue Wang & Shuyao Wu & Shuangcheng Li, 2017. "Urban Metabolism of Three Cities in Jing-Jin-Ji Urban Agglomeration, China: Using the MuSIASEM Approach," Sustainability, MDPI, vol. 9(8), pages 1-21, August.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:8:p:1481-:d:109131
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/8/1481/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/8/1481/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giampietro, Mario & Mayumi, Kozo & Ramos-Martin, Jesus, 2009. "Multi-scale integrated analysis of societal and ecosystem metabolism (MuSIASEM): Theoretical concepts and basic rationale," Energy, Elsevier, vol. 34(3), pages 313-322.
    2. Gasparatos, Alexandros & El-Haram, Mohamed & Horner, Malcolm, 2009. "Assessing the sustainability of the UK society using thermodynamic concepts: Part 1," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1074-1081, June.
    3. Geng, Yong & Liu, Ye & Liu, Dan & Zhao, Hengxin & Xue, Bing, 2011. "Regional societal and ecosystem metabolism analysis in China: A multi-scale integrated analysis of societal metabolism(MSIASM) approach," Energy, Elsevier, vol. 36(8), pages 4799-4808.
    4. Pere Ariza-Montobbio & Katharine Farrell & Gonzalo Gamboa & Jesus Ramos-Martin, 2014. "Integrating energy and land-use planning: socio-metabolic profiles along the rural–urban continuum in Catalonia (Spain)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(4), pages 925-956, August.
    5. Gasparatos, Alexandros & El-Haram, Mohamed & Horner, Malcolm, 2009. "Assessing the sustainability of the UK society using thermodynamic concepts: Part 2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 956-970, June.
    6. Wang, Qiang & Wu, Shi-dai & Zeng, Yue-e & Wu, Bo-wei, 2016. "Exploring the relationship between urbanization, energy consumption, and CO2 emissions in different provinces of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1563-1579.
    7. Jose Carlos Silva-Macher, 2016. "A Metabolic Profile of Peru: An Application of Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM) to the Mining Sector's Exosomatic Energy Flows," Journal of Industrial Ecology, Yale University, vol. 20(5), pages 1072-1082, October.
    8. Chang Liu & Xueyi Shi & Lulu Qu & Bingyi Li, 2016. "Comparative Analysis for the Urban Metabolic Differences of Two Types of Cities in the Resource-Dependent Region Based on Emergy Theory," Sustainability, MDPI, vol. 8(7), pages 1-11, July.
    9. Dominik Wiedenhofer & Dabo Guan & Zhu Liu & Jing Meng & Ning Zhang & Yi-Ming Wei, 2017. "Unequal household carbon footprints in China," Nature Climate Change, Nature, vol. 7(1), pages 75-80, January.
    10. Christopher Kennedy & John Cuddihy & Joshua Engel‐Yan, 2007. "The Changing Metabolism of Cities," Journal of Industrial Ecology, Yale University, vol. 11(2), pages 43-59, April.
    11. Susan E. Lee & Andrew D. Quinn & Chris D.F. Rogers, 2016. "Advancing City Sustainability via Its Systems of Flows: The Urban Metabolism of Birmingham and Its Hinterland," Sustainability, MDPI, vol. 8(3), pages 1-24, March.
    12. Sorman, Alevgul H. & Giampietro, Mario, 2011. "Generating better energy indicators: Addressing the existence of multiple scales and multiple dimensions," Ecological Modelling, Elsevier, vol. 223(1), pages 41-53.
    13. World Commission on Environment and Development,, 1987. "Our Common Future," OUP Catalogue, Oxford University Press, number 9780192820808.
    14. Iorgulescu, Raluca I. & Polimeni, John M., 2009. "A multi-scale integrated analysis of the energy use in Romania, Bulgaria, Poland and Hungary," Energy, Elsevier, vol. 34(3), pages 341-347.
    15. Sun, J. W., 1998. "Changes in energy consumption and energy intensity: A complete decomposition model," Energy Economics, Elsevier, vol. 20(1), pages 85-100, February.
    16. Velasco-Fernández, Raúl & Ramos-Martín, Jesus & Giampietro, Mario, 2015. "The energy metabolism of China and India between 1971 and 2010: Studying the bifurcation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1052-1066.
    17. Mario Giampietro & Kozo Mayumi & Sandra Bukkens, 2001. "Multiple-Scale Integrated Assessment of Societal Metabolism: An Analytical Tool to Study Development and Sustainability," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 3(4), pages 275-307, December.
    18. Ramos-Martín, Jesús & Cañellas-Boltà, Sílvia & Giampietro, Mario & Gamboa, Gonzalo, 2009. "Catalonia's energy metabolism: Using the MuSIASEM approach at different scales," Energy Policy, Elsevier, vol. 37(11), pages 4658-4671, November.
    19. Giampietro, Mario & Mayumi, Kozo, 1997. "A dynamic model of socioeconomic systems based on hierarchy theory and its application to sustainability," Structural Change and Economic Dynamics, Elsevier, vol. 8(4), pages 453-469, October.
    20. Ramos-Martin, Jesus & Giampietro, Mario & Mayumi, Kozo, 2007. "On China's exosomatic energy metabolism: An application of multi-scale integrated analysis of societal metabolism (MSIASM)," Ecological Economics, Elsevier, vol. 63(1), pages 174-191, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Plank, Christina & Liehr, Stefan & Hummel, Diana & Wiedenhofer, Dominik & Haberl, Helmut & Görg, Christoph, 2021. "Doing more with less: Provisioning systems and the transformation of the stock-flow-service nexus," Ecological Economics, Elsevier, vol. 187(C).
    2. Shayma Al Bannay & Satoshi Takizawa, 2022. "Decoupling of Water Production and Electricity Generation from GDP and Population in the Gulf Cooperation Council (GCC) Countries," Sustainability, MDPI, vol. 14(9), pages 1-20, April.
    3. Chen, Lei & Xu, Linyu & Velasco-Fernández, Raúl & Giampietro, Mario & Yang, Zhifeng, 2021. "Residential energy metabolic patterns in China: A study of the urbanization process," Energy, Elsevier, vol. 215(PA).
    4. Pere Ariza-Montobbio & Susana Herrero Olarte, 2021. "Socio-metabolic profiles of electricity consumption along the rural–urban continuum of Ecuador: Whose energy sovereignty?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7961-7995, May.
    5. Susana Toboso‐Chavero & Gara Villalba & Xavier Gabarrell Durany & Cristina Madrid‐López, 2021. "More than the sum of the parts: System analysis of the usability of roofs in housing estates," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1284-1299, October.
    6. Thomas Elliot & Javier Babí Almenar & Samuel Niza & Vânia Proença & Benedetto Rugani, 2019. "Pathways to Modelling Ecosystem Services within an Urban Metabolism Framework," Sustainability, MDPI, vol. 11(10), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nathalia Tejedor-Flores & Purificación Vicente-Galindo & Purificación Galindo-Villardón, 2017. "Sustainability Multivariate Analysis of the Energy Consumption of Ecuador Using MuSIASEM and BIPLOT Approach," Sustainability, MDPI, vol. 9(6), pages 1-15, June.
    2. Andreoni, Valeria, 2020. "The energy metabolism of countries: Energy efficiency and use in the period that followed the global financial crisis," Energy Policy, Elsevier, vol. 139(C).
    3. Pere Ariza-Montobbio & Katharine Farrell & Gonzalo Gamboa & Jesus Ramos-Martin, 2014. "Integrating energy and land-use planning: socio-metabolic profiles along the rural–urban continuum in Catalonia (Spain)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(4), pages 925-956, August.
    4. Borzoni, Matteo, 2011. "Multi-scale integrated assessment of soybean biodiesel in Brazil," Ecological Economics, Elsevier, vol. 70(11), pages 2028-2038, September.
    5. Han, Wenyi & Geng, Yong & Lu, Yangsiyu & Wilson, Jeffrey & Sun, Lu & Satoshi, Onishi & Geldron, Alain & Qian, Yiying, 2018. "Urban metabolism of megacities: A comparative analysis of Shanghai, Tokyo, London and Paris to inform low carbon and sustainable development pathways," Energy, Elsevier, vol. 155(C), pages 887-898.
    6. Nancy Arizpe & Jesus Ramos-Martin & Mario Giampietro, 2012. "An analysis of the metabolic patterns of two rural communities affected by soy expansion in the North of Argentina," UHE Working papers 2012_06, Universitat Autònoma de Barcelona, Departament d'Economia i Història Econòmica, Unitat d'Història Econòmica.
    7. Ramos-Martín, Jesús & Cañellas-Boltà, Sílvia & Giampietro, Mario & Gamboa, Gonzalo, 2009. "Catalonia's energy metabolism: Using the MuSIASEM approach at different scales," Energy Policy, Elsevier, vol. 37(11), pages 4658-4671, November.
    8. Chen, Lei & Xu, Linyu & Velasco-Fernández, Raúl & Giampietro, Mario & Yang, Zhifeng, 2021. "Residential energy metabolic patterns in China: A study of the urbanization process," Energy, Elsevier, vol. 215(PA).
    9. Geng, Yong & Liu, Ye & Liu, Dan & Zhao, Hengxin & Xue, Bing, 2011. "Regional societal and ecosystem metabolism analysis in China: A multi-scale integrated analysis of societal metabolism(MSIASM) approach," Energy, Elsevier, vol. 36(8), pages 4799-4808.
    10. Ginard-Bosch, Francisco Javier & Ramos-Martín, Jesús, 2016. "Energy metabolism of the Balearic Islands (1986–2012)," Ecological Economics, Elsevier, vol. 124(C), pages 25-35.
    11. Recalde, Marina & Ramos-Martin, Jesús, 2012. "Going beyond energy intensity to understand the energy metabolism of nations: The case of Argentina," Energy, Elsevier, vol. 37(1), pages 122-132.
    12. Velasco-Fernández, Raúl & Ramos-Martín, Jesus & Giampietro, Mario, 2015. "The energy metabolism of China and India between 1971 and 2010: Studying the bifurcation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1052-1066.
    13. Andreoni, Valeria, 2017. "Energy Metabolism of 28 World Countries: A Multi-scale Integrated Analysis," Ecological Economics, Elsevier, vol. 142(C), pages 56-69.
    14. Mayumi, Kozo & Tanikawa, Hiroki, 2012. "Going beyond energy accounting for sustainability: Energy, fund elements and the economic process," Energy, Elsevier, vol. 37(1), pages 18-26.
    15. Pere Ariza-Montobbio & Susana Herrero Olarte, 2021. "Socio-metabolic profiles of electricity consumption along the rural–urban continuum of Ecuador: Whose energy sovereignty?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7961-7995, May.
    16. González-López, Rafael & Giampietro, Mario, 2018. "Relational analysis of the oil and gas sector of Mexico: Implications for Mexico's energy reform," Energy, Elsevier, vol. 154(C), pages 403-414.
    17. Raúl Velasco Fernández & Jesus Ramos-Martin & Mario Giampietro, 2013. "The energy metabolism of China and India between 1971-2010: studying the bifurcation," UHE Working papers 2013_02, Universitat Autònoma de Barcelona, Departament d'Economia i Història Econòmica, Unitat d'Història Econòmica.
    18. Pérez-Sánchez, Laura & Giampietro, Mario & Velasco-Fernández, Raúl & Ripa, Maddalena, 2019. "Characterizing the metabolic pattern of urban systems using MuSIASEM: The case of Barcelona," Energy Policy, Elsevier, vol. 124(C), pages 13-22.
    19. Talens Peiró, L. & Villalba Méndez, G. & Sciubba, E. & Gabarrell i Durany, X., 2010. "Extended exergy accounting applied to biodiesel production," Energy, Elsevier, vol. 35(7), pages 2861-2869.
    20. Ricardo Manso & Tânia Sousa & Tiago Domingos, 2017. "Do the Different Exergy Accounting Methodologies Provide Consistent or Contradictory Results? A Case Study with the Portuguese Agricultural, Forestry and Fisheries Sector," Energies, MDPI, vol. 10(8), pages 1-31, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:8:p:1481-:d:109131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.