IDEAS home Printed from https://ideas.repec.org/p/aub/uhewps/2025_02.html
   My bibliography  Save this paper

Living Smaller, Consuming More? The Energy Implications of Aging and Shrinking Households in Spain

Author

Listed:
  • Jesus Ramos-Martin

    (Departament d'Economia i d'Història Econòmica, Universitat Autònoma de Barcelona)

  • Shigeru Matsumoto

    (College of Economics, Aoyama Gakuin University)

Abstract

Accurate projections of residential energy consumption are crucial for achieving decarbonization targets; however, most models overlook demographic dynamics—particularly changes in household composition—which significantly impact energy demand. This study addresses this gap by integrating demographic projections into bottom-up energy forecasts for Spain's residential sector from 2021 to 2039. Using microdata from the Household Budget Survey and disaggregating households into nine types based on size and age structure, the model captures heterogeneous energy use patterns and their evolution over time. Results show that the increasing prevalence of single-person and elderly households, which are less efficient due to reduced economies of scale, offsets much of the expected energy savings from technological improvements. Compared to aggregate models, this disaggregated approach yields more conservative estimates: while per-household and per-capita consumption decline, total residential energy use may increase slightly unless stronger efficiency gains are achieved. To meet Spain’s target of a 1.69% annual reduction in residential energy use by 2030, per-household energy consumption must decrease by over 3.4% annually—more than double the historical rate. These findings highlight the critical role of demographic structure in shaping energy demand and underscore the limitations of conventional modeling approaches. By incorporating household composition into projections, this research enhances the accuracy of energy scenarios and provides evidence for the need to align housing and energy policies with demographic trends. Targeted strategies—such as promoting smaller, energy-efficient dwellings and accelerating building retrofits—are essential for achieving climate goals in an aging and increasingly fragmented society.

Suggested Citation

  • Jesus Ramos-Martin & Shigeru Matsumoto, 2025. "Living Smaller, Consuming More? The Energy Implications of Aging and Shrinking Households in Spain," UHE Working papers 2025_02, Universitat Autònoma de Barcelona, Departament d'Economia i Història Econòmica, Unitat d'Història Econòmica.
  • Handle: RePEc:aub:uhewps:2025_02
    as

    Download full text from publisher

    File URL: https://ddd.uab.cat/pub/worpap/2025/315699/2025_02.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carsten Schröder & Katrin Rehdanz & Daiju Narita & Toshihiro Okubo, 2015. "The decline in average family size and its implications for the average benefits of within "household sharing"," Oxford Economic Papers, Oxford University Press, vol. 67(3), pages 760-780.
    2. Chen, Lei & Xu, Linyu & Velasco-Fernández, Raúl & Giampietro, Mario & Yang, Zhifeng, 2021. "Residential energy metabolic patterns in China: A study of the urbanization process," Energy, Elsevier, vol. 215(PA).
    3. Xavier Labandeira & José M. Labeaga & Miguel Rodríguez, 2006. "A Residential Energy Demand System for Spain," The Energy Journal, , vol. 27(2), pages 87-112, April.
    4. Bardazzi, Rossella & Pazienza, Maria Grazia, 2017. "Switch off the light, please! Energy use, aging population and consumption habits," Energy Economics, Elsevier, vol. 65(C), pages 161-171.
    5. Van Raaij, W. Fred & Verhallen, Theo M. M., 1983. "A behavioral model of residential energy use," Journal of Economic Psychology, Elsevier, vol. 3(1), pages 39-63.
    6. Baker, Paul & Blundell, Richard & Micklewright, John, 1989. "Modelling Household Energy Expenditures Using Micro-data," Economic Journal, Royal Economic Society, vol. 99(397), pages 720-738, September.
    7. Jesus Ramos-Martin & Shigeru Matsumoto, 2025. "Impact of changes in the distribution of household types on residential energy consumption in Spain, 2006-2023," UHE Working papers 2025_01, Universitat Autònoma de Barcelona, Departament d'Economia i Història Econòmica, Unitat d'Història Econòmica.
    8. Cartone, Alfredo & Díaz-Dapena, Alberto & Langarita, Raquel & Rubiera-Morollón, Fernando, 2021. "Where the city lights shine? Measuring the effect of sprawl on electricity consumption in Spain," Land Use Policy, Elsevier, vol. 105(C).
    9. Di Felice, Louisa Jane & Pérez-Sánchez, Laura & Manfroni, Michele & Giampietro, Mario, 2024. "Towards nexus thinking in energy systems modelling: A multi-scale, embodied perspective," Energy Policy, Elsevier, vol. 187(C).
    10. Kavousian, Amir & Rajagopal, Ram & Fischer, Martin, 2013. "Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior," Energy, Elsevier, vol. 55(C), pages 184-194.
    11. Ramos-Martín, Jesús & Cañellas-Boltà, Sílvia & Giampietro, Mario & Gamboa, Gonzalo, 2009. "Catalonia's energy metabolism: Using the MuSIASEM approach at different scales," Energy Policy, Elsevier, vol. 37(11), pages 4658-4671, November.
    12. Abrahamse, Wokje & Steg, Linda, 2009. "How do socio-demographic and psychological factors relate to households' direct and indirect energy use and savings?," Journal of Economic Psychology, Elsevier, vol. 30(5), pages 711-720, October.
    13. Nie, Yan & Zhang, Guoxing & Zhong, Luhao & Su, Bin & Xi, Xi, 2024. "Urban‒rural disparities in household energy and electricity consumption under the influence of electricity price reform policies," Energy Policy, Elsevier, vol. 184(C).
    14. Brounen, Dirk & Kok, Nils & Quigley, John M., 2012. "Residential energy use and conservation: Economics and demographics," European Economic Review, Elsevier, vol. 56(5), pages 931-945.
    15. Frontuto, Vito, 2019. "Forecasting household consumption of fuels: A multiple discrete-continuous approach," Applied Energy, Elsevier, vol. 240(C), pages 205-214.
    16. Hirst, Eric & Goeltz, Richard & Carney, Janet, 1982. "Residential energy use : Analysis of disaggregate data," Energy Economics, Elsevier, vol. 4(2), pages 74-82, April.
    17. De Lauretis, Simona & Ghersi, Frédéric & Cayla, Jean-Michel, 2017. "Energy consumption and activity patterns: An analysis extended to total time and energy use for French households," Applied Energy, Elsevier, vol. 206(C), pages 634-648.
    18. López-Rodríguez, M.A. & Santiago, I. & Trillo-Montero, D. & Torriti, J. & Moreno-Munoz, A., 2013. "Analysis and modeling of active occupancy of the residential sector in Spain: An indicator of residential electricity consumption," Energy Policy, Elsevier, vol. 62(C), pages 742-751.
    19. Daioglou, Vassilis & van Ruijven, Bas J. & van Vuuren, Detlef P., 2012. "Model projections for household energy use in developing countries," Energy, Elsevier, vol. 37(1), pages 601-615.
    20. Lomas, Pedro L. & Giampietro, Mario, 2017. "Environmental accounting for ecosystem conservation: Linking societal and ecosystem metabolisms," Ecological Modelling, Elsevier, vol. 346(C), pages 10-19.
    21. Wu, Wenchao & Kanamori, Yuko & Zhang, Runsen & Zhou, Qian & Takahashi, Kiyoshi & Masui, Toshihiko, 2021. "Implications of declining household economies of scale on electricity consumption and sustainability in China," Ecological Economics, Elsevier, vol. 184(C).
    22. Albert Esteve & David S. Reher, 2024. "Trends in Living Arrangements Around the World," Population and Development Review, The Population Council, Inc., vol. 50(1), pages 211-232, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chalal, Moulay Larbi & Benachir, Medjdoub & White, Michael & Shahtahmassebi, Golnaz & Cumberbatch, Miranda & Shrahily, Raid, 2017. "The impact of the UK household life-cycle transitions on the electricity and gas usage patterns," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 505-518.
    2. Belaïd, Fateh, 2017. "Untangling the complexity of the direct and indirect determinants of the residential energy consumption in France: Quantitative analysis using a structural equation modeling approach," Energy Policy, Elsevier, vol. 110(C), pages 246-256.
    3. Hendrik Schmitz & Reinhard Madlener, 2020. "Heterogeneity in price responsiveness for residential space heating in Germany," Empirical Economics, Springer, vol. 59(5), pages 2255-2281, November.
    4. Belaïd, Fateh & Garcia, Thomas, 2016. "Understanding the spectrum of residential energy-saving behaviours: French evidence using disaggregated data," Energy Economics, Elsevier, vol. 57(C), pages 204-214.
    5. Dorothée Charlier & Bérangère Legendre, 2021. "Carbon Dioxide Emissions and Aging: Disentangling Behavior from Energy Efficiency," Post-Print hal-03877220, HAL.
    6. Zhen Hu & Mei Wang & Zhe Cheng, 2022. "Mapping the knowledge development and trend of household energy consumption," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 6053-6071, May.
    7. Besagni, Giorgio & Borgarello, Marco, 2018. "The determinants of residential energy expenditure in Italy," Energy, Elsevier, vol. 165(PA), pages 369-386.
    8. Dorothée Charlier & Bérangère Legendre, 2020. "Carbon Dioxide Emissions and aging: Disentangling behavior from energy efficiency," Working Papers 2020.13, FAERE - French Association of Environmental and Resource Economists.
    9. Dorothée Charlier & Sondès Kahouli, 2019. "From Residential Energy Demand to Fuel Poverty: Income-induced Non-linearities in the Reactions of Households to Energy Price Fluctuations," The Energy Journal, , vol. 40(2), pages 101-138, March.
    10. Estiri, Hossein, 2014. "Building and household X-factors and energy consumption at the residential sector," Energy Economics, Elsevier, vol. 43(C), pages 178-184.
    11. Fateh Belaïd & Christophe Rault & Camille Massié, 2022. "A life-cycle theory analysis of French household electricity demand," Journal of Evolutionary Economics, Springer, vol. 32(2), pages 501-530, April.
    12. Nozomu Inoue & Shigeru Matsumoto & Kozo Mayumi, 2022. "Household energy consumption pattern changes in an aging society: the case of Japan between 1989 and 2014 in retrospect," International Journal of Economic Policy Studies, Springer, vol. 16(1), pages 67-83, February.
    13. Yarbaşı, İkram Yusuf & Çelik, Ali Kemal, 2023. "The determinants of household electricity demand in Turkey: An implementation of the Heckman Sample Selection model," Energy, Elsevier, vol. 283(C).
    14. Salomé Bakaloglou and Dorothée Charlier, 2019. "Energy Consumption in the French Residential Sector: How Much do Individual Preferences Matter?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    15. Kettani, Maryème & Sanin, Maria Eugenia, 2024. "Energy consumption and energy poverty in Morocco," Energy Policy, Elsevier, vol. 185(C).
    16. Tilov, Ivan & Farsi, Mehdi & Volland, Benjamin, 2020. "From frugal Jane to wasteful John: A quantile regression analysis of Swiss households’ electricity demand," Energy Policy, Elsevier, vol. 138(C).
    17. Salari, Mahmoud & Javid, Roxana J., 2016. "Residential energy demand in the United States: Analysis using static and dynamic approaches," Energy Policy, Elsevier, vol. 98(C), pages 637-649.
    18. Zhu, Penghu & Lin, Boqiang, 2022. "Do the elderly consume more energy? Evidence from the retirement policy in urban China," Energy Policy, Elsevier, vol. 165(C).
    19. Han, Hongyun & Wu, Shu, 2018. "Rural residential energy transition and energy consumption intensity in China," Energy Economics, Elsevier, vol. 74(C), pages 523-534.
    20. Huebner, Gesche & Shipworth, David & Hamilton, Ian & Chalabi, Zaid & Oreszczyn, Tadj, 2016. "Understanding electricity consumption: A comparative contribution of building factors, socio-demographics, appliances, behaviours and attitudes," Applied Energy, Elsevier, vol. 177(C), pages 692-702.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • D10 - Microeconomics - - Household Behavior - - - General
    • I31 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - General Welfare, Well-Being
    • J11 - Labor and Demographic Economics - - Demographic Economics - - - Demographic Trends, Macroeconomic Effects, and Forecasts
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q57 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Ecological Economics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aub:uhewps:2025_02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jesus Ramos-Martin (email available below). General contact details of provider: https://edirc.repec.org/data/heuabes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.