IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v33y2008i3p513-523.html
   My bibliography  Save this article

Seasonal variations in residential and commercial sector electricity consumption in Hong Kong

Author

Listed:
  • Lam, Joseph C.
  • Tang, H.L.
  • Li, Danny H.W.

Abstract

We present the energy use situation in Hong Kong from 1979 to 2006. The primary energy requirement (PER) nearly tripled during the 28-year period, rising from 195,405 to 566,685TJ, about two-third of which was used for electricity generation. The residential and commercial sectors are the two largest electricity end-users with an average annual growth rate of 5.9% and 7.4%, respectively. The monthly consumption in these two sectors shows distinct seasonal variations mainly due to changes in the air-conditioning requirements, which are affected by the prevailing weather conditions. Principal component analysis of five major climatic variables—dry-bulb temperature, wet-bulb temperature, global solar radiation, clearness index and wind speed—was conducted. Measured sector-wide electricity consumption was correlated with the corresponding two principal components determined using multiple regression technique. The regression models could give a very good indication of the annual electricity use (largely within a few percents), but individual monthly estimation could differ by up to 24%. It was also found that the climatic indicators determined appeared to show a slight increasing trend during the 28-year period indicating a subtle, but gradual change of climatic conditions that might affect future air-conditioning requirements.

Suggested Citation

  • Lam, Joseph C. & Tang, H.L. & Li, Danny H.W., 2008. "Seasonal variations in residential and commercial sector electricity consumption in Hong Kong," Energy, Elsevier, vol. 33(3), pages 513-523.
  • Handle: RePEc:eee:energy:v:33:y:2008:i:3:p:513-523
    DOI: 10.1016/j.energy.2007.10.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544207001831
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2007.10.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yee Yan, Yuk, 1998. "Climate and residential electricity consumption in Hong Kong," Energy, Elsevier, vol. 23(1), pages 17-20.
    2. Sailor, David J. & Muñoz, J.Ricardo, 1997. "Sensitivity of electricity and natural gas consumption to climate in the U.S.A.—Methodology and results for eight states," Energy, Elsevier, vol. 22(10), pages 987-998.
    3. Sailor, David J. & Rosen, Jesse N. & Muñoz, J.Ricardo, 1998. "Natural gas consumption and climate: a comprehensive set of predictive state-level models for the United States," Energy, Elsevier, vol. 23(2), pages 91-103.
    4. Mirasgedis, S. & Sarafidis, Y. & Georgopoulou, E. & Lalas, D.P. & Moschovits, M. & Karagiannis, F. & Papakonstantinou, D., 2006. "Models for mid-term electricity demand forecasting incorporating weather influences," Energy, Elsevier, vol. 31(2), pages 208-227.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yau, Y.H. & Pean, H.L., 2011. "The climate change impact on air conditioner system and reliability in Malaysia—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4939-4949.
    2. Miller, J. Isaac & Nam, Kyungsik, 2022. "Modeling peak electricity demand: A semiparametric approach using weather-driven cross-temperature response functions," Energy Economics, Elsevier, vol. 114(C).
    3. Son, Hyojoo & Kim, Changwan, 2017. "Short-term forecasting of electricity demand for the residential sector using weather and social variables," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 200-207.
    4. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2012. "Impact of climate change on energy use in the built environment in different climate zones – A review," Energy, Elsevier, vol. 42(1), pages 103-112.
    5. Ruth, Matthias & Lin, Ai-Chen, 2006. "Regional energy demand and adaptations to climate change: Methodology and application to the state of Maryland, USA," Energy Policy, Elsevier, vol. 34(17), pages 2820-2833, November.
    6. Psiloglou, B.E. & Giannakopoulos, C. & Majithia, S. & Petrakis, M., 2009. "Factors affecting electricity demand in Athens, Greece and London, UK: A comparative assessment," Energy, Elsevier, vol. 34(11), pages 1855-1863.
    7. Askari, S. & Montazerin, N. & Zarandi, M.H. Fazel, 2015. "Forecasting semi-dynamic response of natural gas networks to nodal gas consumptions using genetic fuzzy systems," Energy, Elsevier, vol. 83(C), pages 252-266.
    8. Richard Cebula, 2012. "Recent evidence on determinants of per residential customer electricity consumption in the U.S.: 2001-2005," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 36(4), pages 925-936, October.
    9. Bianco, Vincenzo & Manca, Oronzio & Nardini, Sergio & Minea, Alina A., 2010. "Analysis and forecasting of nonresidential electricity consumption in Romania," Applied Energy, Elsevier, vol. 87(11), pages 3584-3590, November.
    10. Fung, W.Y. & Lam, K.S. & Hung, W.T. & Pang, S.W. & Lee, Y.L., 2006. "Impact of urban temperature on energy consumption of Hong Kong," Energy, Elsevier, vol. 31(14), pages 2623-2637.
    11. Hirano, Y. & Fujita, T., 2012. "Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo," Energy, Elsevier, vol. 37(1), pages 371-383.
    12. Trotter, Ian Michael & Féres, José Gustavo & Bolkesjø, Torjus Folsland & de Hollanda, Lavínia Rocha, 2015. "Simulating Brazilian Electricity Demand Under Climate Change Scenarios," Working Papers in Applied Economics 208689, Universidade Federal de Vicosa, Departamento de Economia Rural.
    13. Wang, Yaoping & Bielicki, Jeffrey M., 2018. "Acclimation and the response of hourly electricity loads to meteorological variables," Energy, Elsevier, vol. 142(C), pages 473-485.
    14. Marilyn A. Brown & Matt Cox & Ben Staver & Paul Baer, 2016. "Modeling climate-driven changes in U.S. buildings energy demand," Climatic Change, Springer, vol. 134(1), pages 29-44, January.
    15. Bakhat, Mohcine & Rosselló, Jaume, 2011. "Estimation of tourism-induced electricity consumption: The case study of Balearics Islands, Spain," Energy Economics, Elsevier, vol. 33(3), pages 437-444, May.
    16. Bianco, Vincenzo & Manca, Oronzio & Nardini, Sergio, 2009. "Electricity consumption forecasting in Italy using linear regression models," Energy, Elsevier, vol. 34(9), pages 1413-1421.
    17. Jianhua Huang & Kevin Robert Gurney, 2016. "Impact of climate change on U.S. building energy demand: sensitivity to spatiotemporal scales, balance point temperature, and population distribution," Climatic Change, Springer, vol. 137(1), pages 171-185, July.
    18. Morakinyo, Tobi Eniolu & Ren, Chao & Shi, Yuan & Lau, Kevin Ka-Lun & Tong, Hang-Wai & Choy, Chun-Wing & Ng, Edward, 2019. "Estimates of the impact of extreme heat events on cooling energy demand in Hong Kong," Renewable Energy, Elsevier, vol. 142(C), pages 73-84.
    19. Matthew Ranson & Lauren Morris & Alex Kats-Rubin, 2014. "Climate Change and Space Heating Energy Demand: A Review of the Literature," NCEE Working Paper Series 201407, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Dec 2014.
    20. Spoladore, Alessandro & Borelli, Davide & Devia, Francesco & Mora, Flavio & Schenone, Corrado, 2016. "Model for forecasting residential heat demand based on natural gas consumption and energy performance indicators," Applied Energy, Elsevier, vol. 182(C), pages 488-499.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:33:y:2008:i:3:p:513-523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.