IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7225-d670715.html
   My bibliography  Save this article

Microcrack Porosity Estimation Based on Rock Physics Templates: A Case Study in Sichuan Basin, China

Author

Listed:
  • Chuantong Ruan

    (School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China
    School of Mathematics and Statistics, Zhoukou Normal University, Zhoukou 466001, China)

  • Jing Ba

    (School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China)

  • José M. Carcione

    (School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China
    National Institute of Oceanography and Applied Geophysics (OGS), 34010 Trieste, Italy)

  • Tiansheng Chen

    (Petroleum Exploration and Production Research Institute, SINOPEC, Beijing 100083, China)

  • Runfa He

    (School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China)

Abstract

Low porosity-permeability structures and microcracks, where gas is produced, are the main characteristics of tight sandstone gas reservoirs in the Sichuan Basin, China. In this work, an analysis of amplitude variation with offset (AVO) is performed. Based on the experimental and log data, sensitivity analysis is performed to sort out the rock physics attributes sensitive to microcrack and total porosities. The Biot–Rayleigh poroelasticity theory describes the complexity of the rock and yields the seismic properties, such as Poisson’s ratio and P-wave impedance, which are used to build rock-physics templates calibrated with ultrasonic data at varying effective pressures. The templates are then applied to seismic data of the Xujiahe formation to estimate the total and microcrack porosities, indicating that the results are consistent with actual gas production reports.

Suggested Citation

  • Chuantong Ruan & Jing Ba & José M. Carcione & Tiansheng Chen & Runfa He, 2021. "Microcrack Porosity Estimation Based on Rock Physics Templates: A Case Study in Sichuan Basin, China," Energies, MDPI, vol. 14(21), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7225-:d:670715
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7225/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7225/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Jianliang & Feng, Lianyong & Steve, Mohr & Tang, Xu & Gail, Tverberg E. & Mikael, Höök, 2015. "China's unconventional oil: A review of its resources and outlook for long-term production," Energy, Elsevier, vol. 82(C), pages 31-42.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chun Zhu & Xiaojie Yang & Zhigang Tao & Jianping Sun, 2022. "Challenges and Opportunities in Rock Mechanics and Engineering—An Overview," Energies, MDPI, vol. 15(3), pages 1-3, January.
    2. Han Jin & Cai Liu & Zhiqi Guo, 2023. "Characterization of Tight Gas Sandstone Properties Based on Rock Physical Modeling and Seismic Inversion Methods," Energies, MDPI, vol. 16(22), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ke & Feng, Lianyong & Wang, Jianliang & Xiong, Yi & Tverberg, Gail E., 2016. "An oil production forecast for China considering economic limits," Energy, Elsevier, vol. 113(C), pages 586-596.
    2. Pang, Boxue & Ren, Xianghui & Liu, Zaobao & Wang, Xin & Liu, Xu, 2023. "Investigation on multiphase flow of multi-size cuttings particles and non-Newtonian drilling fluids in oil and gas horizontal well drilling using kinetic theory of granular flow," Energy, Elsevier, vol. 282(C).
    3. Wang, Jianliang & Mohr, Steve & Feng, Lianyong & Liu, Huihui & Tverberg, Gail E., 2016. "Analysis of resource potential for China’s unconventional gas and forecast for its long-term production growth," Energy Policy, Elsevier, vol. 88(C), pages 389-401.
    4. Wang, Guoying & Liu, Shaowei & Yang, Dong & Fu, Mengxiong, 2022. "Numerical study on the in-situ pyrolysis process of steeply dipping oil shale deposits by injecting superheated water steam: A case study on Jimsar oil shale in Xinjiang, China," Energy, Elsevier, vol. 239(PC).
    5. Li, Sihai & Zhang, Shicheng & Xing, Huilin & Zou, Yushi, 2022. "CO2–brine–rock interactions altering the mineralogical, physical, and mechanical properties of carbonate-rich shale oil reservoirs," Energy, Elsevier, vol. 256(C).
    6. Jun Yan & Lianyong Feng & Alina Steblyanskaya & Anton Sokolov & Nataliya Iskritskaya, 2019. "Creating an Energy Analysis Concept for Oil and Gas Companies: The Case of the Yakutiya Company in Russia," Energies, MDPI, vol. 12(2), pages 1-18, January.
    7. Juan Jin & Jiandong Liu & Weidong Jiang & Wei Cheng & Xiaowen Zhang, 2022. "Evolution of the Anisotropic Thermal Conductivity of Oil Shale with Temperature and Its Relationship with Anisotropic Pore Structure Evolution," Energies, MDPI, vol. 15(21), pages 1-16, October.
    8. Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Framework for advanced exergoeconomic performance analysis and optimization of an oil shale retorting process," Energy, Elsevier, vol. 109(C), pages 62-76.
    9. Li, Hui & Han, De-hua & Sun, Min & Yuan, Hemin & Gao, Jinghuai, 2022. "An experimental investigation on effects of saturation levels and fluid types on elastic properties of bitumen-saturated sands at elevated temperatures," Energy, Elsevier, vol. 238(PC).
    10. Peng, Zhiyong & Xu, Jialing & Rong, Siqi & Luo, Kui & Lu, Libo & Jin, Hui & Zhao, Qiuyang & Guo, Liejin, 2023. "Thermodynamic and environmental analysis for multi-component supercritical thermal fluid generation by supercritical water gasification of oilfield wastewater," Energy, Elsevier, vol. 269(C).
    11. Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Advanced exergy analysis of an oil shale retorting process," Applied Energy, Elsevier, vol. 165(C), pages 405-415.
    12. Zhan, Honglei & Chen, Mengxi & Zhao, Kun & Li, Yizhang & Miao, Xinyang & Ye, Haimu & Ma, Yue & Hao, Shijie & Li, Hongfang & Yue, Wenzheng, 2018. "The mechanism of the terahertz spectroscopy for oil shale detection," Energy, Elsevier, vol. 161(C), pages 46-51.
    13. Huang, HanWei & Yu, Hao & Xu, WenLong & Lyu, ChengSi & Micheal, Marembo & Xu, HengYu & Liu, He & Wu, HengAn, 2023. "A coupled thermo-hydro-mechanical-chemical model for production performance of oil shale reservoirs during in-situ conversion process," Energy, Elsevier, vol. 268(C).
    14. Wenxiang Chen & Zubo Zhang & Qingjie Liu & Xu Chen & Prince Opoku Appau & Fuyong Wang, 2018. "Experimental Investigation of Oil Recovery from Tight Sandstone Oil Reservoirs by Pressure Depletion," Energies, MDPI, vol. 11(10), pages 1-17, October.
    15. Wang, Lele & Wei, Bing & You, Junyu & Pu, Wanfen & Tang, Jinyu & Lu, Jun, 2023. "Performance of a tight reservoir horizontal well induced by gas huff–n–puff integrating fracture geometry, rock stress-sensitivity and molecular diffusion: A case study using CO2, N2 and produced gas," Energy, Elsevier, vol. 263(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7225-:d:670715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.