IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i12p7616-7621.html
   My bibliography  Save this article

A comparison of two typical multicyclic models used to forecast the world's conventional oil production

Author

Listed:
  • Wang, Jianliang
  • Feng, Lianyong
  • Zhao, Lin
  • Snowden, Simon
  • Wang, Xu

Abstract

This paper introduces two typical multicyclic models: the Hubbert model and the Generalized Weng model. The model-solving process of the two is expounded, and it provides the basis for an empirical analysis of the world's conventional oil production. The results for both show that the world's conventional oil (crude+NGLs) production will reach its peak in 2011 with a production of 30 billion barrels (Gb). In addition, the forecasting effects of these two models, given the same URR are compared, and the intrinsic characteristics of these two models are analyzed. This demonstrates that for specific criteria the multicyclic Generalized Weng model is an improvement on the multicyclic Hubbert model. Finally, based upon the resultant forecast for the world's conventional oil, some suggestions are proposed for China's policy makers.

Suggested Citation

  • Wang, Jianliang & Feng, Lianyong & Zhao, Lin & Snowden, Simon & Wang, Xu, 2011. "A comparison of two typical multicyclic models used to forecast the world's conventional oil production," Energy Policy, Elsevier, vol. 39(12), pages 7616-7621.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:12:p:7616-7621 DOI: 10.1016/j.enpol.2011.07.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421511005751
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Höök, Mikael & Hirsch, Robert & Aleklett, Kjell, 2009. "Giant oil field decline rates and their influence on world oil production," Energy Policy, Elsevier, vol. 37(6), pages 2262-2272, June.
    2. Maggio, G. & Cacciola, G., 2009. "A variant of the Hubbert curve for world oil production forecasts," Energy Policy, Elsevier, vol. 37(11), pages 4761-4770, November.
    3. Bentley, R. W., 2002. "Global oil & gas depletion: an overview," Energy Policy, Elsevier, vol. 30(3), pages 189-205, February.
    4. Patzek, Tadeusz W. & Croft, Gregory D., 2010. "A global coal production forecast with multi-Hubbert cycle analysis," Energy, Elsevier, vol. 35(8), pages 3109-3122.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jianliang & Feng, Lianyong & Tverberg, Gail E., 2013. "An analysis of China's coal supply and its impact on China's future economic growth," Energy Policy, Elsevier, vol. 57(C), pages 542-551.
    2. Semenychev, V.K. & Kurkin, E.I. & Semenychev, E.V., 2014. "Modelling and forecasting the trends of life cycle curves in the production of non-renewable resources," Energy, Elsevier, vol. 75(C), pages 244-251.
    3. Wang, Jianliang & Feng, Lianyong & Davidsson, Simon & Höök, Mikael, 2013. "Chinese coal supply and future production outlooks," Energy, Elsevier, vol. 60(C), pages 204-214.
    4. Wang, Jianzhou & Jiang, Haiyan & Zhou, Qingping & Wu, Jie & Qin, Shanshan, 2016. "China’s natural gas production and consumption analysis based on the multicycle Hubbert model and rolling Grey model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1149-1167.
    5. Zhang, Yujiang & Feng, Guorui & Zhang, Min & Ren, Hongrui & Bai, Jinwen & Guo, Yuxia & Jiang, Haina & Kang, Lixun, 2016. "Residual coal exploitation and its impact on sustainable development of the coal industry in China," Energy Policy, Elsevier, vol. 96(C), pages 534-541.
    6. Wang, Xibo & Lei, Yalin & Ge, Jianping & Wu, Sanmang, 2015. "Production forecast of China׳s rare earths based on the Generalized Weng model and policy recommendations," Resources Policy, Elsevier, vol. 43(C), pages 11-18.
    7. Wang, Jianliang & Mohr, Steve & Feng, Lianyong & Liu, Huihui & Tverberg, Gail E., 2016. "Analysis of resource potential for China’s unconventional gas and forecast for its long-term production growth," Energy Policy, Elsevier, vol. 88(C), pages 389-401.
    8. Hu, Yan & Hall, Charles A.S. & Wang, Jianliang & Feng, Lianyong & Poisson, Alexandre, 2013. "Energy Return on Investment (EROI) of China's conventional fossil fuels: Historical and future trends," Energy, Elsevier, vol. 54(C), pages 352-364.
    9. Wang, Jianliang & Feng, Lianyong & Steve, Mohr & Tang, Xu & Gail, Tverberg E. & Mikael, Höök, 2015. "China's unconventional oil: A review of its resources and outlook for long-term production," Energy, Elsevier, vol. 82(C), pages 31-42.
    10. Wang, Jianliang & Feng, Lianyong & Zhao, Lin & Snowden, Simon, 2013. "China's natural gas: Resources, production and its impacts," Energy Policy, Elsevier, vol. 55(C), pages 690-698.
    11. Yang, Guangfei & Li, Xianneng & Wang, Jianliang & Lian, Lian & Ma, Tieju, 2015. "Modeling oil production based on symbolic regression," Energy Policy, Elsevier, vol. 82(C), pages 48-61.
    12. Wang, Ke & Feng, Lianyong & Wang, Jianliang & Xiong, Yi & Tverberg, Gail E., 2016. "An oil production forecast for China considering economic limits," Energy, Elsevier, vol. 113(C), pages 586-596.
    13. Chavez-Rodriguez, Mauro F. & Szklo, Alexandre & de Lucena, Andre Frossard Pereira, 2015. "Analysis of past and future oil production in Peru under a Hubbert approach," Energy Policy, Elsevier, vol. 77(C), pages 140-151.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:12:p:7616-7621. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.