IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v48y2012icp137-147.html
   My bibliography  Save this article

Impact of carbon intensity and energy security constraints on China's coal import

Author

Listed:
  • Lin, Boqiang
  • Liu, Jianghua
  • Yang, Yingchun

Abstract

Logistic and Gaussian Curves are adopted in this article to predict the coal production peak for Shanxi province, Henan province as well as the whole of China. According to the prediction based on the basic coal reserve data, coal production in China will reach its peak in the 2030s while that of Shanxi and Henan provinces will be achieved by the 2040s and 2020s respectively. This article also assesses the influential factors of China's coal peak and revises the forecast of Lin and Liu (2010) about China's coal demand by taking the CO2 intensity constraint into consideration, and then predicting the corresponding coal import. The results show that China would import 983 million tonnes of coal in 2020; which takes as high as 27% of China's total coal consumption. This article demonstrates that even if China fulfills CO2 intensity constraint, the country's energy situation would still be grim as a result of its high GDP growth rate. Therefore, China has to consider both CO2 intensity and energy security constraints when establishing strategic energy plan. Finally, this article suggests an adjustment of energy structure by which those constraints can be addressed and further assesses the effect of the adjusted energy structure.

Suggested Citation

  • Lin, Boqiang & Liu, Jianghua & Yang, Yingchun, 2012. "Impact of carbon intensity and energy security constraints on China's coal import," Energy Policy, Elsevier, vol. 48(C), pages 137-147.
  • Handle: RePEc:eee:enepol:v:48:y:2012:i:c:p:137-147
    DOI: 10.1016/j.enpol.2012.04.079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512003965
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.04.079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patzek, Tadeusz W. & Croft, Gregory D., 2010. "A global coal production forecast with multi-Hubbert cycle analysis," Energy, Elsevier, vol. 35(8), pages 3109-3122.
    2. Kruyt, Bert & van Vuuren, D.P. & de Vries, H.J.M. & Groenenberg, H., 2009. "Indicators for energy security," Energy Policy, Elsevier, vol. 37(6), pages 2166-2181, June.
    3. Lin, Boqiang & Li, Xuehui, 2011. "The effect of carbon tax on per capita CO2 emissions," Energy Policy, Elsevier, vol. 39(9), pages 5137-5146, September.
    4. Nel, Willem P. & Cooper, Christopher J., 2009. "Implications of fossil fuel constraints on economic growth and global warming," Energy Policy, Elsevier, vol. 37(1), pages 166-180, January.
    5. Leung, Guy C.K., 2011. "China's energy security: Perception and reality," Energy Policy, Elsevier, vol. 39(3), pages 1330-1337, March.
    6. Darmstadter, Joel, 1997. "Productivity Changes in U.S. Coal Mining," RFF Working Paper Series dp-97-40, Resources for the Future.
    7. Bentley, R. W., 2002. "Global oil & gas depletion: an overview," Energy Policy, Elsevier, vol. 30(3), pages 189-205, February.
    8. Lin, Bo-qiang & Liu, Jiang-hua, 2010. "Estimating coal production peak and trends of coal imports in China," Energy Policy, Elsevier, vol. 38(1), pages 512-519, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Zhihao & Hong, Junjie, 2021. "Trade policy uncertainty and energy intensity: Evidence from Chinese industrial firms," Energy Economics, Elsevier, vol. 103(C).
    2. Huang, Guobin & Zhang, Jie & Yu, Jian & Shi, Xunpeng, 2020. "Impact of transportation infrastructure on industrial pollution in Chinese cities: A spatial econometric analysis," Energy Economics, Elsevier, vol. 92(C).
    3. Hughes, Larry & Ranjan, Ashish, 2013. "Event-related stresses in energy systems and their effects on energy security," Energy, Elsevier, vol. 59(C), pages 413-421.
    4. Zhu, Junpeng & Lin, Boqiang, 2020. "Convergence analysis of city-level energy intensity in China," Energy Policy, Elsevier, vol. 139(C).
    5. Huijie Yan, 2015. "The Integration of Energy, Environment and Health Policies in China: A Review," AMSE Working Papers 1548, Aix-Marseille School of Economics, France, revised 10 Nov 2015.
    6. Yip, Tsz Leung & Wong, Mei Chi, 2015. "The Nicaragua Canal: scenarios of its future roles," Journal of Transport Geography, Elsevier, vol. 43(C), pages 1-13.
    7. Viebahn, Peter & Vallentin, Daniel & Höller, Samuel, 2015. "Prospects of carbon capture and storage (CCS) in China’s power sector – An integrated assessment," Applied Energy, Elsevier, vol. 157(C), pages 229-244.
    8. Shao, Shuai & Liu, Jianghua & Geng, Yong & Miao, Zhuang & Yang, Yingchun, 2016. "Uncovering driving factors of carbon emissions from China’s mining sector," Applied Energy, Elsevier, vol. 166(C), pages 220-238.
    9. Tang, Erzi & Peng, Chong, 2017. "A macro- and microeconomic analysis of coal production in China," Resources Policy, Elsevier, vol. 51(C), pages 234-242.
    10. Jiameng Hu & Baoying Ye & Zhongke Bai & Jiawei Hui, 2022. "Comparison of the Vegetation Index of Reclamation Mining Areas Calculated by Multi-Source Remote Sensing Data," Land, MDPI, vol. 11(3), pages 1-16, February.
    11. Dong, Qichen & Lin, Yongyi & Huang, Jieyu & Chen, Zhongfei, 2020. "Has urbanization accelerated PM2.5 emissions? An empirical analysis with cross-country data," China Economic Review, Elsevier, vol. 59(C).
    12. Huijie Yan, 2015. "The Integration of Energy, Environment and Health Policies in China: A Review," Working Papers halshs-01247183, HAL.
    13. Ranjan, Ashish & Hughes, Larry, 2014. "Energy security and the diversity of energy flows in an energy system," Energy, Elsevier, vol. 73(C), pages 137-144.
    14. Friedrichs, Jörg & Inderwildi, Oliver R., 2013. "The carbon curse: Are fuel rich countries doomed to high CO2 intensities?," Energy Policy, Elsevier, vol. 62(C), pages 1356-1365.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Höök, Mikael & Tang, Xu, 2013. "Depletion of fossil fuels and anthropogenic climate change—A review," Energy Policy, Elsevier, vol. 52(C), pages 797-809.
    2. Siqi Li & Rongrong Li, 2017. "Energy Sustainability Evaluation Model Based on the Matter-Element Extension Method: A Case Study of Shandong Province, China," Sustainability, MDPI, vol. 9(11), pages 1-9, November.
    3. García-Gusano, Diego & Iribarren, Diego, 2018. "Prospective energy security scenarios in Spain: The future role of renewable power generation technologies and climate change implications," Renewable Energy, Elsevier, vol. 126(C), pages 202-209.
    4. Xu Tang & Benjamin C. McLellan & Simon Snowden & Baosheng Zhang & Mikael Höök, 2015. "Dilemmas for China: Energy, Economy and Environment," Sustainability, MDPI, vol. 7(5), pages 1-13, May.
    5. Rye, Craig D. & Jackson, Tim, 2018. "A review of EROEI-dynamics energy-transition models," Energy Policy, Elsevier, vol. 122(C), pages 260-272.
    6. Lin, Boqiang & Wang, Ting, 2012. "Forecasting natural gas supply in China: Production peak and import trends," Energy Policy, Elsevier, vol. 49(C), pages 225-233.
    7. Wang, Ting & Lin, Boqiang, 2014. "Impacts of unconventional gas development on China׳s natural gas production and import," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 546-554.
    8. Wang, Jianliang & Feng, Lianyong & Tverberg, Gail E., 2013. "An analysis of China's coal supply and its impact on China's future economic growth," Energy Policy, Elsevier, vol. 57(C), pages 542-551.
    9. Wang, Bing & Kocaoglu, Dundar F. & Daim, Tugrul U. & Yang, Jiting, 2010. "A decision model for energy resource selection in China," Energy Policy, Elsevier, vol. 38(11), pages 7130-7141, November.
    10. Wang, Jianzhou & Jiang, Haiyan & Zhou, Qingping & Wu, Jie & Qin, Shanshan, 2016. "China’s natural gas production and consumption analysis based on the multicycle Hubbert model and rolling Grey model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1149-1167.
    11. Wu, X.F. & Chen, G.Q., 2018. "Coal use embodied in globalized world economy: From source to sink through supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 978-993.
    12. Ren, Jingzheng & Sovacool, Benjamin K., 2014. "Quantifying, measuring, and strategizing energy security: Determining the most meaningful dimensions and metrics," Energy, Elsevier, vol. 76(C), pages 838-849.
    13. Zhao, Chunfu & Chen, Bin, 2014. "China’s oil security from the supply chain perspective: A review," Applied Energy, Elsevier, vol. 136(C), pages 269-279.
    14. Wang, Jianliang & Feng, Lianyong & Zhao, Lin & Snowden, Simon & Wang, Xu, 2011. "A comparison of two typical multicyclic models used to forecast the world's conventional oil production," Energy Policy, Elsevier, vol. 39(12), pages 7616-7621.
    15. Hu, Yan & Hall, Charles A.S. & Wang, Jianliang & Feng, Lianyong & Poisson, Alexandre, 2013. "Energy Return on Investment (EROI) of China's conventional fossil fuels: Historical and future trends," Energy, Elsevier, vol. 54(C), pages 352-364.
    16. Wang, Lei & Cheng, Yuan-Ping, 2012. "Drainage and utilization of Chinese coal mine methane with a coal–methane co-exploitation model: Analysis and projections," Resources Policy, Elsevier, vol. 37(3), pages 315-321.
    17. Thameur Necibi, 2014. "Prospective Modelling of Oil Supply in Tunisia," International Journal of Energy Economics and Policy, Econjournals, vol. 4(2), pages 220-228.
    18. Lu, Weiwei & Su, Meirong & Zhang, Yan & Yang, Zhifeng & Chen, Bin & Liu, Gengyuan, 2014. "Assessment of energy security in China based on ecological network analysis: A perspective from the security of crude oil supply," Energy Policy, Elsevier, vol. 74(C), pages 406-413.
    19. Xibo Wang & Mingtao Yao & Jiashuo Li & Kexue Zhang & He Zhu & Minsi Zheng, 2017. "China’s Rare Earths Production Forecasting and Sustainable Development Policy Implications," Sustainability, MDPI, vol. 9(6), pages 1-14, June.
    20. Ang, B.W. & Choong, W.L. & Ng, T.S., 2015. "Energy security: Definitions, dimensions and indexes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1077-1093.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:48:y:2012:i:c:p:137-147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.