IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v39y2014icp546-554.html
   My bibliography  Save this article

Impacts of unconventional gas development on China׳s natural gas production and import

Author

Listed:
  • Wang, Ting
  • Lin, Boqiang

Abstract

China has become a net importer of natural gas as a result of rapidly increasing consumption in recent years. A production peak would exist since natural gas is an exhaustible resource. As conventional natural gas production peak approaches, the development of unconventional natural gas is attracting increasing attention. China׳s unconventional natural gas reserves are abundant, but exploration is still in its infancy stage. Thus, with the increasing quest for low-carbon development and China׳s natural gas price reform, studying the impacts of unconventional gas development on China׳s natural gas supply and price reform under different scenarios has practical significance. In this paper we predict China׳s natural gas production trends in different scenarios and forecast natural gas demand. This paper concludes that the exploitation of unconventional natural gas will greatly improve China׳s annual natural gas production, and delay the production peak year. This is important for China׳s natural gas supply security as it can decrease dependence on imported gas. Furthermore, as the cleanest fossil fuel, it will enable more time and space for renewable energy development given the many costs and controversies surrounding its development in China.

Suggested Citation

  • Wang, Ting & Lin, Boqiang, 2014. "Impacts of unconventional gas development on China׳s natural gas production and import," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 546-554.
  • Handle: RePEc:eee:rensus:v:39:y:2014:i:c:p:546-554
    DOI: 10.1016/j.rser.2014.07.103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114005553
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.07.103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Yongchen & Yang, Lei & Zhao, Jiafei & Liu, Weiguo & Yang, Mingjun & Li, Yanghui & Liu, Yu & Li, Qingping, 2014. "The status of natural gas hydrate research in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 778-791.
    2. Wang, Qiang & Chen, Xi & Jha, Awadhesh N. & Rogers, Howard, 2014. "Natural gas from shale formation – The evolution, evidences and challenges of shale gas revolution in United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1-28.
    3. Lin, Boqiang & Wang, Ting, 2012. "Forecasting natural gas supply in China: Production peak and import trends," Energy Policy, Elsevier, vol. 49(C), pages 225-233.
    4. Luo, D.K. & Dai, Y.J. & Xia, L.Y., 2011. "Economic evaluation based policy analysis for coalbed methane industry in China," Energy, Elsevier, vol. 36(1), pages 360-368.
    5. Mohr, S.H. & Evans, G.M., 2011. "Long term forecasting of natural gas production," Energy Policy, Elsevier, vol. 39(9), pages 5550-5560, September.
    6. Ozturk, Murat & Yuksel, Yunus Emre & Ozek, Nuri, 2011. "A Bridge between East and West: Turkey's natural gas policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4286-4294.
    7. Brandt, Adam R., 2007. "Testing Hubbert," Energy Policy, Elsevier, vol. 35(5), pages 3074-3088, May.
    8. Douglas B. Reynolds & Marek Kolodziej, 2009. "North American Natural Gas Supply Forecast: The Hubbert Method Including the Effects of Institutions," Energies, MDPI, vol. 2(2), pages 1-38, May.
    9. Bentley, R. W., 2002. "Global oil & gas depletion: an overview," Energy Policy, Elsevier, vol. 30(3), pages 189-205, February.
    10. Owen, Nick A. & Inderwildi, Oliver R. & King, David A., 2010. "The status of conventional world oil reserves--Hype or cause for concern?," Energy Policy, Elsevier, vol. 38(8), pages 4743-4749, August.
    11. Lin, Bo-qiang & Liu, Jiang-hua, 2010. "Estimating coal production peak and trends of coal imports in China," Energy Policy, Elsevier, vol. 38(1), pages 512-519, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sharafian, Amir & Talebian, Hoda & Blomerus, Paul & Herrera, Omar & Mérida, Walter, 2017. "A review of liquefied natural gas refueling station designs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 503-513.
    2. Mingjing Guo & Yan Bu & Jinhua Cheng & Ziyu Jiang, 2018. "Natural Gas Security in China: A Simulation of Evolutionary Trajectory and Obstacle Degree Analysis," Sustainability, MDPI, vol. 11(1), pages 1-18, December.
    3. Liu, Guixian & Dong, Xiucheng & Jiang, Qingzhe & Dong, Cong & Li, Jiaman, 2018. "Natural gas consumption of urban households in China and corresponding influencing factors," Energy Policy, Elsevier, vol. 122(C), pages 17-26.
    4. Yuan, Jiehui & Luo, Dongkun & Xia, Liangyu & Feng, Lianyong, 2015. "Policy recommendations to promote shale gas development in China based on a technical and economic evaluation," Energy Policy, Elsevier, vol. 85(C), pages 194-206.
    5. Jian Chai & Ying Jin, 2020. "The Dynamic Impacts of Oil Price on China’s Natural Gas Consumption under the Change of Global Oil Market Patterns: An Analysis from the Perspective of Total Consumption and Structure," Energies, MDPI, vol. 13(4), pages 1-16, February.
    6. Berk, Istemi & Ediger, Volkan Ş., 2016. "Forecasting the coal production: Hubbert curve application on Turkey's lignite fields," Resources Policy, Elsevier, vol. 50(C), pages 193-203.
    7. Jiehui Yuan & Xunmin Ou & Gehua Wang, 2017. "Establishing a Framework to Evaluate the Effect of Energy Countermeasures Tackling Climate Change and Air Pollution: The Example of China," Sustainability, MDPI, vol. 9(9), pages 1-23, September.
    8. Hongxun Liu & Jianglong Li, 2018. "The US Shale Gas Revolution and Its Externality on Crude Oil Prices: A Counterfactual Analysis," Sustainability, MDPI, vol. 10(3), pages 1-17, March.
    9. Xunpeng, Shi & Variam, Hari Malamakkavu Padinjare & Tao, Jacqueline, 2017. "Global impact of uncertainties in China’s gas market," Energy Policy, Elsevier, vol. 104(C), pages 382-394.
    10. Zhang, Qi & Li, Zhan & Wang, Ge & Li, Hailong, 2016. "Study on the impacts of natural gas supply cost on gas flow and infrastructure deployment in China," Applied Energy, Elsevier, vol. 162(C), pages 1385-1398.
    11. Min Fu & Yang Yang & Lixin Tian & Zaili Zhen, 2017. "The Spatiotemporal Dynamics of Natural Gas Imports in OECD Countries," Sustainability, MDPI, vol. 9(11), pages 1-19, November.
    12. Wang, Jianliang & Mohr, Steve & Feng, Lianyong & Liu, Huihui & Tverberg, Gail E., 2016. "Analysis of resource potential for China’s unconventional gas and forecast for its long-term production growth," Energy Policy, Elsevier, vol. 88(C), pages 389-401.
    13. Cong Dong & Xiucheng Dong & Joel Gehman & Lianne Lefsrud, 2017. "Using BP Neural Networks to Prioritize Risk Management Approaches for China’s Unconventional Shale Gas Industry," Sustainability, MDPI, vol. 9(6), pages 1-18, June.
    14. Chen, Yizhong & Li, Jing & Lu, Hongwei & Yang, Yiyang, 2020. "Impact of unconventional natural gas development on regional water resources and market supply in China from the perspective of game analysis," Energy Policy, Elsevier, vol. 145(C).
    15. Zhao, Jiafei & Song, Yongchen & Lim, Xin-Le & Lam, Wei-Haur, 2017. "Opportunities and challenges of gas hydrate policies with consideration of environmental impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 875-885.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Boqiang & Wang, Ting, 2012. "Forecasting natural gas supply in China: Production peak and import trends," Energy Policy, Elsevier, vol. 49(C), pages 225-233.
    2. Yang, Guangfei & Li, Xianneng & Wang, Jianliang & Lian, Lian & Ma, Tieju, 2015. "Modeling oil production based on symbolic regression," Energy Policy, Elsevier, vol. 82(C), pages 48-61.
    3. Xie, Minghua & Wei, Xiaonan & Chen, Chuanglian & Sun, Chuanwang, 2022. "China's natural gas production peak and energy return on investment (EROI): From the perspective of energy security," Energy Policy, Elsevier, vol. 164(C).
    4. Jakobsson, Kristofer & Söderbergh, Bengt & Höök, Mikael & Aleklett, Kjell, 2009. "How reasonable are oil production scenarios from public agencies?," Energy Policy, Elsevier, vol. 37(11), pages 4809-4818, November.
    5. Lin, Boqiang & Liu, Jianghua & Yang, Yingchun, 2012. "Impact of carbon intensity and energy security constraints on China's coal import," Energy Policy, Elsevier, vol. 48(C), pages 137-147.
    6. Brandt, Adam R. & Plevin, Richard J. & Farrell, Alexander E., 2010. "Dynamics of the oil transition: Modeling capacity, depletion, and emissions," Energy, Elsevier, vol. 35(7), pages 2852-2860.
    7. Xu Tang & Benjamin C. McLellan & Simon Snowden & Baosheng Zhang & Mikael Höök, 2015. "Dilemmas for China: Energy, Economy and Environment," Sustainability, MDPI, vol. 7(5), pages 1-13, May.
    8. Talal AL-Bazali & Mohammad Al-Zuhair, 2022. "The Use of Fuzzy Logic to Assess Sustainability of Oil and Gas Resources (R/P): Technical, Economic and Political Perspectives," International Journal of Energy Economics and Policy, Econjournals, vol. 12(2), pages 449-458, March.
    9. Wang, Jianliang & Mohr, Steve & Feng, Lianyong & Liu, Huihui & Tverberg, Gail E., 2016. "Analysis of resource potential for China’s unconventional gas and forecast for its long-term production growth," Energy Policy, Elsevier, vol. 88(C), pages 389-401.
    10. Chavez-Rodriguez, Mauro F. & Szklo, Alexandre & de Lucena, Andre Frossard Pereira, 2015. "Analysis of past and future oil production in Peru under a Hubbert approach," Energy Policy, Elsevier, vol. 77(C), pages 140-151.
    11. Li, Yanbin & Li, Yun & Wang, Bingqian & Chen, Zhuoer & Nie, Dan, 2016. "The status quo review and suggested policies for shale gas development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 420-428.
    12. Wang, Jianzhou & Jiang, Haiyan & Zhou, Qingping & Wu, Jie & Qin, Shanshan, 2016. "China’s natural gas production and consumption analysis based on the multicycle Hubbert model and rolling Grey model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1149-1167.
    13. Qiao, Weibiao & Liu, Wei & Liu, Enbin, 2021. "A combination model based on wavelet transform for predicting the difference between monthly natural gas production and consumption of U.S," Energy, Elsevier, vol. 235(C).
    14. Syed Aziz Ur Rehman & Yanpeng Cai & Nayyar Hussain Mirjat & Gordhan Das Walasai & Izaz Ali Shah & Sharafat Ali, 2017. "The Future of Sustainable Energy Production in Pakistan: A System Dynamics-Based Approach for Estimating Hubbert Peaks," Energies, MDPI, vol. 10(11), pages 1-24, November.
    15. Wang, Xibo & Lei, Yalin & Ge, Jianping & Wu, Sanmang, 2015. "Production forecast of China׳s rare earths based on the Generalized Weng model and policy recommendations," Resources Policy, Elsevier, vol. 43(C), pages 11-18.
    16. Hu, Yan & Hall, Charles A.S. & Wang, Jianliang & Feng, Lianyong & Poisson, Alexandre, 2013. "Energy Return on Investment (EROI) of China's conventional fossil fuels: Historical and future trends," Energy, Elsevier, vol. 54(C), pages 352-364.
    17. Jean Gaston Tamba & Salom Ndjakomo Essiane & Emmanuel Flavian Sapnken & Francis Djanna Koffi & Jean Luc Nsouand l & Bozidar Soldo & Donatien Njomo, 2018. "Forecasting Natural Gas: A Literature Survey," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 216-249.
    18. Thameur Necibi, 2014. "Prospective Modelling of Oil Supply in Tunisia," International Journal of Energy Economics and Policy, Econjournals, vol. 4(2), pages 220-228.
    19. Ali Mirchi & Saeed Hadian & Kaveh Madani & Omid M. Rouhani & Azadeh M. Rouhani, 2012. "World Energy Balance Outlook and OPEC Production Capacity: Implications for Global Oil Security," Energies, MDPI, vol. 5(8), pages 1-26, July.
    20. Reynolds, Douglas B. & Baek, Jungho, 2012. "Much ado about Hotelling: Beware the ides of Hubbert," Energy Economics, Elsevier, vol. 34(1), pages 162-170.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:39:y:2014:i:c:p:546-554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.