IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v228y2018icp2321-2332.html
   My bibliography  Save this article

Driving forces underlying sub-national carbon dioxide emissions within the household sector and implications for the Paris Agreement targets in Japan

Author

Listed:
  • Shigetomi, Yosuke
  • Matsumoto, Ken'ichi
  • Ogawa, Yuki
  • Shiraki, Hiroto
  • Yamamoto, Yuki
  • Ochi, Yuki
  • Ehara, Tomoki

Abstract

This study investigated insights into reducing energy-related CO2 emissions in households by examining individual socio-economic drivers at a sub-national level. Specifically, the logarithmic mean Divisia index technique was used to decompose CO2 emission trends into six drivers in all 47 prefectures of Japan during the period from 1990 to 2015. Drivers included the change in the number of households (household effect), distribution of households (distribution effect), household size (size effect), per-capita household energy consumption (consumption effect), household energy choice (choice effect), and sectoral CO2 emission intensity (intensity effect). The results showed that, in contrast to size and the distribution effects, the number of households had a positive, significant effect on CO2 emissions, indicating that recent demographic trends are responsible for the increase in CO2 emissions observed in most of the prefectures during the study period. With regard to effects related to consumption and choice, CO2 emissions due to changes in lifestyle dropped in only seven prefectures and reductions due to changes in sectoral energy choice were seen in only two prefectures in 2015. The intensity effect boosted the emissions of these prefectures the most in 2015 because of the shutdown of nuclear power plants due to the Great East Japan Earthquake. Further, we identified those prefectures that needed to reduce their per-capita energy consumption level in order to attain the reduction targets for household CO2 emissions in 2030 from 2015, given projected changes in demographic trends and recent and projected emission intensities. In order to achieve reductions in total CO2 emissions in line with the Paris Agreement, it is important to prioritize national and local policy interventions for the transfer of new household energy technologies, upgrade household appliances, and encourage people to limit energy consumption in light of the differences in these key drivers in each prefecture.

Suggested Citation

  • Shigetomi, Yosuke & Matsumoto, Ken'ichi & Ogawa, Yuki & Shiraki, Hiroto & Yamamoto, Yuki & Ochi, Yuki & Ehara, Tomoki, 2018. "Driving forces underlying sub-national carbon dioxide emissions within the household sector and implications for the Paris Agreement targets in Japan," Applied Energy, Elsevier, vol. 228(C), pages 2321-2332.
  • Handle: RePEc:eee:appene:v:228:y:2018:i:c:p:2321-2332
    DOI: 10.1016/j.apenergy.2018.07.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918310857
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.07.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nishijima, Daisuke, 2017. "The role of technology, product lifetime, and energy efficiency in climate mitigation: A case study of air conditioners in Japan," Energy Policy, Elsevier, vol. 104(C), pages 340-347.
    2. Ang, B.W., 2015. "LMDI decomposition approach: A guide for implementation," Energy Policy, Elsevier, vol. 86(C), pages 233-238.
    3. Wang, Miao & Feng, Chao, 2017. "Decomposition of energy-related CO2 emissions in China: An empirical analysis based on provincial panel data of three sectors," Applied Energy, Elsevier, vol. 190(C), pages 772-787.
    4. Mizobuchi, Kenichi & Takeuchi, Kenji, 2016. "Replacement or additional purchase: The impact of energy-efficient appliances on household electricity saving under public pressures," Energy Policy, Elsevier, vol. 93(C), pages 137-148.
    5. Jeong, Kyonghwa & Kim, Suyi, 2013. "LMDI decomposition analysis of greenhouse gas emissions in the Korean manufacturing sector," Energy Policy, Elsevier, vol. 62(C), pages 1245-1253.
    6. Cansino, José M. & Sánchez-Braza, Antonio & Rodríguez-Arévalo, María L., 2015. "Driving forces of Spain׳s CO2 emissions: A LMDI decomposition approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 749-759.
    7. Hammond, G.P. & Norman, J.B., 2012. "Decomposition analysis of energy-related carbon emissions from UK manufacturing," Energy, Elsevier, vol. 41(1), pages 220-227.
    8. Xu, Xianshuo & Zhao, Tao & Liu, Nan & Kang, Jidong, 2014. "Changes of energy-related GHG emissions in China: An empirical analysis from sectoral perspective," Applied Energy, Elsevier, vol. 132(C), pages 298-307.
    9. Lu, I.J. & Lin, Sue J. & Lewis, Charles, 2007. "Decomposition and decoupling effects of carbon dioxide emission from highway transportation in Taiwan, Germany, Japan and South Korea," Energy Policy, Elsevier, vol. 35(6), pages 3226-3235, June.
    10. Pothitou, Mary & Hanna, Richard F. & Chalvatzis, Konstantinos J., 2016. "Environmental knowledge, pro-environmental behaviour and energy savings in households: An empirical study," Applied Energy, Elsevier, vol. 184(C), pages 1217-1229.
    11. Ang, B.W. & Goh, Tian, 2016. "Carbon intensity of electricity in ASEAN: Drivers, performance and outlook," Energy Policy, Elsevier, vol. 98(C), pages 170-179.
    12. Satoshi Nakano & Ayu Washizu, 2017. "Changes in consumer behavior as a result of the Home Appliance Eco-Point System: an analysis based on micro data from the Family Income and Expenditure Survey," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 19(3), pages 459-482, July.
    13. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    14. Matsumoto, Ken’ichi & Shiraki, Hiroto, 2018. "Energy security performance in Japan under different socioeconomic and energy conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 391-401.
    15. Román, Rocío & Cansino, José M. & Rodas, José A., 2018. "Analysis of the main drivers of CO2 emissions changes in Colombia (1990–2012) and its political implications," Renewable Energy, Elsevier, vol. 116(PA), pages 402-411.
    16. Sumabat, Ana Karmela & Lopez, Neil Stephen & Yu, Krista Danielle & Hao, Han & Li, Richard & Geng, Yong & Chiu, Anthony S.F., 2016. "Decomposition analysis of Philippine CO2 emissions from fuel combustion and electricity generation," Applied Energy, Elsevier, vol. 164(C), pages 795-804.
    17. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    18. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
    19. Xu, X.Y. & Ang, B.W., 2014. "Analysing residential energy consumption using index decomposition analysis," Applied Energy, Elsevier, vol. 113(C), pages 342-351.
    20. Li, Hao & Zhao, Yuhuan & Qiao, Xiaoyong & Liu, Ya & Cao, Ye & Li, Yue & Wang, Song & Zhang, Zhonghua & Zhang, Yongfeng & Weng, Jianfeng, 2017. "Identifying the driving forces of national and regional CO2 emissions in China: Based on temporal and spatial decomposition analysis models," Energy Economics, Elsevier, vol. 68(C), pages 522-538.
    21. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    22. Sun, J. W., 1998. "Changes in energy consumption and energy intensity: A complete decomposition model," Energy Economics, Elsevier, vol. 20(1), pages 85-100, February.
    23. Kuramochi, Takeshi, 2015. "Review of energy and climate policy developments in Japan before and after Fukushima," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1320-1332.
    24. Manfred Lenzen, 2016. "Structural analyses of energy use and carbon emissions -- an overview," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 119-132, June.
    25. Donglan, Zha & Dequn, Zhou & Peng, Zhou, 2010. "Driving forces of residential CO2 emissions in urban and rural China: An index decomposition analysis," Energy Policy, Elsevier, vol. 38(7), pages 3377-3383, July.
    26. Yuan, Baolong & Ren, Shenggang & Chen, Xiaohong, 2015. "The effects of urbanization, consumption ratio and consumption structure on residential indirect CO2 emissions in China: A regional comparative analysis," Applied Energy, Elsevier, vol. 140(C), pages 94-106.
    27. Ouyang, Xiaoling & Lin, Boqiang, 2015. "An analysis of the driving forces of energy-related carbon dioxide emissions in China’s industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 838-849.
    28. Rafal Chomik & John Piggott, 2015. "Population Ageing and Social Security in Asia," Asian Economic Policy Review, Japan Center for Economic Research, vol. 10(2), pages 199-222, July.
    29. Mousavi, Babak & Lopez, Neil Stephen A. & Biona, Jose Bienvenido Manuel & Chiu, Anthony S.F. & Blesl, Markus, 2017. "Driving forces of Iran's CO2 emissions from energy consumption: An LMDI decomposition approach," Applied Energy, Elsevier, vol. 206(C), pages 804-814.
    30. Andrew Chapman & Hidemichi Fujii & Shunsuke Managi, 2018. "Key Drivers for Cooperation toward Sustainable Development and the Management of CO 2 Emissions: Comparative Analysis of Six Northeast Asian Countries," Sustainability, MDPI, vol. 10(1), pages 1-12, January.
    31. Wang, Ge & Zhang, Qi & Li, Hailong & McLellan, Benjamin C. & Chen, Siyuan & Li, Yan & Tian, Yulu, 2017. "Study on the promotion impact of demand response on distributed PV penetration by using non-cooperative game theoretical analysis," Applied Energy, Elsevier, vol. 185(P2), pages 1869-1878.
    32. Moutinho, Victor & Moreira, António Carrizo & Silva, Pedro Miguel, 2015. "The driving forces of change in energy-related CO2 emissions in Eastern, Western, Northern and Southern Europe: The LMDI approach to decomposition analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1485-1499.
    33. Feng, Kuishuang & Hubacek, Klaus & Guan, Dabo, 2009. "Lifestyles, technology and CO2 emissions in China: A regional comparative analysis," Ecological Economics, Elsevier, vol. 69(1), pages 145-154, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Satoshi Nakano & Ayu Washizu, 2019. "In Which Time Slots Can People Save Power? An Analysis Using a Japanese Survey on Time Use," Sustainability, MDPI, vol. 11(16), pages 1-18, August.
    2. Shi, Xunpeng & Wang, Keying & Cheong, Tsun Se & Zhang, Hongwu, 2020. "Prioritizing driving factors of household carbon emissions: An application of the LASSO model with survey data," Energy Economics, Elsevier, vol. 92(C).
    3. Shali Wang & Jiaxi Wu & Yunan Peng & Jane Xu & Lisa Leinonen & Yuyu Wang & Zheng Meng, 2022. "Influence of Residential Photovoltaic Promotion Policy on Installation Intention in Typical Regions of China," Sustainability, MDPI, vol. 14(14), pages 1-30, July.
    4. Xie, Jun & Zhou, Shaojie & Teng, Fei & Gu, Alun, 2023. "The characteristics and driving factors of household CO2 and non-CO2 emissions in China," Ecological Economics, Elsevier, vol. 213(C).
    5. Long, Yin & Yoshida, Yoshikuni & Meng, Jing & Guan, Dabo & Yao, Liming & Zhang, Haoran, 2019. "Unequal age-based household emission and its monthly variation embodied in energy consumption – A cases study of Tokyo, Japan," Applied Energy, Elsevier, vol. 247(C), pages 350-362.
    6. Dong, Kangyin & Hochman, Gal & Timilsina, Govinda R., 2020. "Do drivers of CO2 emission growth alter overtime and by the stage of economic development?," Energy Policy, Elsevier, vol. 140(C).
    7. Jingjing Chen & Yangyang Lin & Xiaojun Wang & Bingjing Mao & Lihong Peng, 2022. "Direct and Indirect Carbon Emission from Household Consumption Based on LMDI and SDA Model: A Decomposition and Comparison Analysis," Energies, MDPI, vol. 15(14), pages 1-22, July.
    8. Shiraki, Hiroto & Matsumoto, Ken'ichi & Shigetomi, Yosuke & Ehara, Tomoki & Ochi, Yuki & Ogawa, Yuki, 2020. "Factors affecting CO2 emissions from private automobiles in Japan: The impact of vehicle occupancy," Applied Energy, Elsevier, vol. 259(C).
    9. Wang, Xiaozhen & Zheng, Ying & Jiang, Zihao & Tao, Ziyang, 2021. "Influence mechanism of subsidy policy on household photovoltaic purchase intention under an urban-rural divide in China," Energy, Elsevier, vol. 220(C).
    10. Chen, Peipei & Wu, Yi & Zhong, Honglin & Long, Yin & Meng, Jing, 2022. "Exploring household emission patterns and driving factors in Japan using machine learning methods," Applied Energy, Elsevier, vol. 307(C).
    11. Yuzhuo Huang & Yosuke Shigetomi & Andrew Chapman & Ken’ichi Matsumoto, 2019. "Uncovering Household Carbon Footprint Drivers in an Aging, Shrinking Society," Energies, MDPI, vol. 12(19), pages 1-18, September.
    12. Heffron, Raphael & Körner, Marc-Fabian & Wagner, Jonathan & Weibelzahl, Martin & Fridgen, Gilbert, 2020. "Industrial demand-side flexibility: A key element of a just energy transition and industrial development," Applied Energy, Elsevier, vol. 269(C).
    13. Balezentis, Tomas, 2020. "Shrinking ageing population and other drivers of energy consumption and CO2 emission in the residential sector: A case from Eastern Europe," Energy Policy, Elsevier, vol. 140(C).
    14. Weihua Su & Yuying Wang & Dalia Streimikiene & Tomas Balezentis & Chonghui Zhang, 2020. "Carbon dioxide emission decomposition along the gradient of economic development: The case of energy sustainability in the G7 and Brazil, Russia, India, China and South Africa," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(4), pages 657-669, July.
    15. Choe, Changgwon & Haider, Junaid & Lim, Hankwon, 2023. "Carbon capture and liquefaction from methane steam reforming unit: 4E’s analysis (Energy, Exergy, Economic, and Environmental)," Applied Energy, Elsevier, vol. 332(C).
    16. Wang, Shubin & Sun, Shaolong & Zhao, Erlong & Wang, Shouyang, 2021. "Urban and rural differences with regional assessment of household energy consumption in China," Energy, Elsevier, vol. 232(C).
    17. Lu, Guanyu & Sugino, Makoto & Arimura, Toshi H. & Horie, Tetsuya, 2022. "Success and failure of the voluntary action plan: Disaggregated sector decomposition analysis of energy-related CO2 emissions in Japan," Energy Policy, Elsevier, vol. 163(C).
    18. Itiki, Rodney & Manjrekar, Madhav & Di Santo, Silvio Giuseppe & Machado, Luis Fernando M., 2020. "Technical feasibility of Japan-Taiwan-Philippines HVdc interconnector to the Asia Pacific Super Grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    19. Wang, Yang & Liu, Yongzhang & Huang, Liqiao & Zhang, Qingyu & Gao, Wei & Sun, Qian & Li, Xi, 2022. "Decomposition the driving force of regional electricity consumption in Japan from 2001 to 2015," Applied Energy, Elsevier, vol. 308(C).
    20. Yu, Miao & Meng, Bo & Li, Rong, 2022. "Analysis of China's urban household indirect carbon emissions drivers under the background of population aging," Structural Change and Economic Dynamics, Elsevier, vol. 60(C), pages 114-125.
    21. Fikru, Mahelet G. & Kisswani, Khalid M., 2023. "Environmental impacts of household energy use in ASEAN-5 countries: Are there asymmetric effects?," Energy Policy, Elsevier, vol. 182(C).
    22. Anshuman Chaube & Andrew Chapman & Yosuke Shigetomi & Kathryn Huff & James Stubbins, 2020. "The Role of Hydrogen in Achieving Long Term Japanese Energy System Goals," Energies, MDPI, vol. 13(17), pages 1-17, September.
    23. Ouyang, Tiancheng & Tan, Jiaqi & Wu, Wencong & Xie, Shutao & Li, Difan, 2022. "Energy, exergy and economic benefits deriving from LNG-fired power plant: Cold energy power generation combined with carbon dioxide capture," Renewable Energy, Elsevier, vol. 195(C), pages 214-229.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shiraki, Hiroto & Matsumoto, Ken'ichi & Shigetomi, Yosuke & Ehara, Tomoki & Ochi, Yuki & Ogawa, Yuki, 2020. "Factors affecting CO2 emissions from private automobiles in Japan: The impact of vehicle occupancy," Applied Energy, Elsevier, vol. 259(C).
    2. Xianrui Liao & Wei Yang & Yichen Wang & Junnian Song, 2019. "Uncovering Variations, Determinants, and Disparities of Multisector-Level Final Energy Use of Industries Across Cities," Sustainability, MDPI, vol. 11(6), pages 1-16, March.
    3. Linwei Ma & Chinhao Chong & Xi Zhang & Pei Liu & Weiqi Li & Zheng Li & Weidou Ni, 2018. "LMDI Decomposition of Energy-Related CO 2 Emissions Based on Energy and CO 2 Allocation Sankey Diagrams: The Method and an Application to China," Sustainability, MDPI, vol. 10(2), pages 1-37, January.
    4. Li, Hao & Zhao, Yuhuan & Qiao, Xiaoyong & Liu, Ya & Cao, Ye & Li, Yue & Wang, Song & Zhang, Zhonghua & Zhang, Yongfeng & Weng, Jianfeng, 2017. "Identifying the driving forces of national and regional CO2 emissions in China: Based on temporal and spatial decomposition analysis models," Energy Economics, Elsevier, vol. 68(C), pages 522-538.
    5. Román-Collado, Rocío & Cansino, José M. & Botia, Camilo, 2018. "How far is Colombia from decoupling? Two-level decomposition analysis of energy consumption changes," Energy, Elsevier, vol. 148(C), pages 687-700.
    6. Juan David Rivera-Niquepa & Daniela Rojas-Lozano & Paulo M. De Oliveira-De Jesus & Jose M. Yusta, 2022. "Decomposition Analysis of the Aggregate Carbon Intensity (ACI) of the Power Sector in Colombia—A Multi-Temporal Analysis," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    7. Rui Jiang & Rongrong Li & Qiuhong Wu, 2019. "Investigation for the Decomposition of Carbon Emissions in the USA with C-D Function and LMDI Methods," Sustainability, MDPI, vol. 11(2), pages 1-15, January.
    8. Md. Afzal Hossain & Jean Engo & Songsheng Chen, 2021. "The main factors behind Cameroon’s CO2 emissions before, during and after the economic crisis of the 1980s," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4500-4520, March.
    9. Liang, Wei & Gan, Ting & Zhang, Wei, 2019. "Dynamic evolution of characteristics and decomposition of factors influencing industrial carbon dioxide emissions in China: 1991–2015," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 93-106.
    10. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
    11. De Oliveira-De Jesus, Paulo M., 2019. "Effect of generation capacity factors on carbon emission intensity of electricity of Latin America & the Caribbean, a temporal IDA-LMDI analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 516-526.
    12. Jaruwan Chontanawat & Paitoon Wiboonchutikula & Atinat Buddhivanich, 2020. "Decomposition Analysis of the Carbon Emissions of the Manufacturing and Industrial Sector in Thailand," Energies, MDPI, vol. 13(4), pages 1-23, February.
    13. Yuzhuo Huang & Yosuke Shigetomi & Andrew Chapman & Ken’ichi Matsumoto, 2019. "Uncovering Household Carbon Footprint Drivers in an Aging, Shrinking Society," Energies, MDPI, vol. 12(19), pages 1-18, September.
    14. Goh, Tian & Ang, B.W. & Xu, X.Y., 2018. "Quantifying drivers of CO2 emissions from electricity generation – Current practices and future extensions," Applied Energy, Elsevier, vol. 231(C), pages 1191-1204.
    15. Dong, Kangyin & Hochman, Gal & Timilsina, Govinda R., 2020. "Do drivers of CO2 emission growth alter overtime and by the stage of economic development?," Energy Policy, Elsevier, vol. 140(C).
    16. Wang, Miao & Feng, Chao, 2018. "Using an extended logarithmic mean Divisia index approach to assess the roles of economic factors on industrial CO2 emissions of China," Energy Economics, Elsevier, vol. 76(C), pages 101-114.
    17. Ščasný, M. & Ang, B.W. & Rečka, L., 2021. "Decomposition analysis of air pollutants during the transition and post-transition periods in the Czech Republic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    18. Lima, Fátima & Nunes, Manuel Lopes & Cunha, Jorge & Lucena, André F.P., 2017. "Driving forces for aggregate energy consumption: A cross-country approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1033-1050.
    19. Ang, B.W. & Goh, Tian, 2019. "Index decomposition analysis for comparing emission scenarios: Applications and challenges," Energy Economics, Elsevier, vol. 83(C), pages 74-87.
    20. Mousavi, Babak & Lopez, Neil Stephen A. & Biona, Jose Bienvenido Manuel & Chiu, Anthony S.F. & Blesl, Markus, 2017. "Driving forces of Iran's CO2 emissions from energy consumption: An LMDI decomposition approach," Applied Energy, Elsevier, vol. 206(C), pages 804-814.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:228:y:2018:i:c:p:2321-2332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.